Skip to main content

Main menu

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae

User menu

  • My alerts
  • Log in
  • Log out

Search

  • Advanced search
Plant Physiology
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae
  • My alerts
  • Log in
  • Log out
Plant Physiology

Advanced Search

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Follow plantphysiol on Twitter
  • Visit plantphysiol on Facebook
  • Visit Plantae
Research ArticleDevelopment and Growth Regulation
You have accessRestricted Access

Ionic Current Changes Associated with the Gravity-Induced Bending Response in Roots of Zea mays L.

David A. Collings, Rosemary G. White, Robyn L. Overall
David A. Collings
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Rosemary G. White
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Robyn L. Overall
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site

Published November 1992. DOI: https://doi.org/10.1104/pp.100.3.1417

  • Article
  • Info & Metrics
  • PDF
Loading
  • © 1992 American Society of Plant Biologists

Abstract

A vibrating probe was used to measure the changes in ionic currents around gravistimulated roots of Zea mays L. in an effort to determine whether these currents are involved in stimulus transduction from the root cap to the elongation zone. We did not observe a migration of the previously reported auxin-insensitive current efflux associated with gravity sensing (T. Björkman, A.C. Leopold [1987] Plant Physiol 84:841-846) back from the root cap. Instead, beginning 10 to 15 min after gravistimulation, an asymmetry in current developed simultaneously along the root around the meristem and apical regions of the elongation zone. This asymmetry comprised a proton efflux from the upper surface, which was superimposed on the symmetrical pattern around the vertical root. The gravity-induced proton efflux was inhibited by the application of the auxin transport inhibitor, 2,3,5-triiodobenzoic acid, whereas the calcium channel blocker, lanthanum, had little effect. Because the onset of the gravity-induced current asymmetry coincided both spatially and temporally with the onset of the differential growth response, we suggest that this current efflux may result from auxin-requiring acid-growth phenomena in the upper root tissue. The implications of this simultaneous onset of both proton efflux and elongation for theories about gravity stimulus transduction are discussed.

PreviousNext
Back to top

Table of Contents

Download PDF
Email Article

Thank you for your interest in spreading the word on Plant Physiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Ionic Current Changes Associated with the Gravity-Induced Bending Response in Roots of Zea mays L.
(Your Name) has sent you a message from Plant Physiology
(Your Name) thought you would like to see the Plant Physiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Ionic Current Changes Associated with the Gravity-Induced Bending Response in Roots of Zea mays L.
David A. Collings, Rosemary G. White, Robyn L. Overall
Plant Physiology Nov 1992, 100 (3) 1417-1426; DOI: 10.1104/pp.100.3.1417

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Ionic Current Changes Associated with the Gravity-Induced Bending Response in Roots of Zea mays L.
David A. Collings, Rosemary G. White, Robyn L. Overall
Plant Physiology Nov 1992, 100 (3) 1417-1426; DOI: 10.1104/pp.100.3.1417
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF

In this issue

Plant Physiology
Vol. 100, Issue 3
November 1992
  • Table of Contents
  • Index by author

More in this TOC Section

  • The rms1 Mutant of Pea Has Elevated Indole-3-Acetic Acid Levels and Reduced Root-Sap Zeatin Riboside Content but Increased Branching Controlled by Graft-Transmissible Signal(s)
  • Bacterial Cellulose-Binding Domain Modulates in Vitro Elongation of Different Plant Cells
  • Gibberellin Dose-Response Regulation of GA4 Gene Transcript Levels in Arabidopsis
Show more DEVELOPMENT AND GROWTH REGULATION

Similar Articles

Our Content

  • Home
  • Current Issue
  • Plant Physiology Preview
  • Archive
  • Focus Collections
  • Classic Collections
  • The Plant Cell
  • Plant Direct
  • Plantae
  • ASPB

For Authors

  • Instructions
  • Submit a Manuscript
  • Editorial Board and Staff
  • Policies
  • Recognizing our Authors

For Reviewers

  • Instructions
  • Journal Miles
  • Policies

Other Services

  • Permissions
  • Librarian resources
  • Advertise in our journals
  • Alerts
  • RSS Feeds

Copyright © 2021 by The American Society of Plant Biologists

Powered by HighWire