Skip to main content

Main menu

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae

User menu

  • My alerts
  • Log in
  • Log out

Search

  • Advanced search
Plant Physiology
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae
  • My alerts
  • Log in
  • Log out
Plant Physiology

Advanced Search

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Follow plantphysiol on Twitter
  • Visit plantphysiol on Facebook
  • Visit Plantae
Research ArticleMembranes and Bioenergetics
You have accessRestricted Access

Reconstitution and Characterization of a Calmodulin-Stimulated Ca2+-Pumping ATPase Purified from Brassica oleracea L.

Per Askerlund, David E. Evans
Per Askerlund
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
David E. Evans
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site

Published December 1992. DOI: https://doi.org/10.1104/pp.100.4.1670

  • Article
  • Info & Metrics
  • PDF
Loading
  • © 1992 American Society of Plant Biologists

Abstract

Purification and functional reconstitution of a calmodulin-stimulated Ca2+-ATPase from cauliflower (Brassica oleracea L.) is described. Activity was purified about 120-fold from a microsomal fraction using calmodulin-affinity chromatography. The purified fraction showed a polypeptide at 115 kD, which formed a phosphorylated intermediate in the presence of Ca2+, together with a few polypeptides with lower molecular masses that were not phosphorylated. The ATPase was reconstituted into liposomes by 3-([cholamidopropyl]-dimethylammonio-)1-propanesulfonate (CHAPS) dialysis. The proteoliposomes showed ATP-dependent Ca2+ uptake and ATPase activity, both of which were stimulated about 4-fold by calmodulin. Specific ATPase activity was about 5 μmol min−1 (mg protein)−1, and the Ca2+/ATP ratio was 0.1 to 0.5 when the ATPase was reconstituted with entrapped oxalate. The purified, reconstituted Ca2+-ATPase was inhibited by vanadate and erythrosin B, but not by cyclopiazonic acid and thapsigargin. Activity was supported by ATP (100%) and GTP (50%) and had a pH optimum of about 7.0. The effect of monovalent and divalent cations (including Ca2+) on activity is described. Assay of membranes purified by two-phase partitioning indicated that approximately 95% of the activity was associated with intracellular membranes, but only about 5% with plasma membranes. Sucrose gradient centrifugation suggests that the endoplasmic reticulum is the major cellular location of calmodulin-stimulated Ca2+-pumping ATPase in Brassica oleracea inflorescences.

PreviousNext
Back to top

Table of Contents

Download PDF
Email Article

Thank you for your interest in spreading the word on Plant Physiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Reconstitution and Characterization of a Calmodulin-Stimulated Ca2+-Pumping ATPase Purified from Brassica oleracea L.
(Your Name) has sent you a message from Plant Physiology
(Your Name) thought you would like to see the Plant Physiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Reconstitution and Characterization of a Calmodulin-Stimulated Ca2+-Pumping ATPase Purified from Brassica oleracea L.
Per Askerlund, David E. Evans
Plant Physiology Dec 1992, 100 (4) 1670-1681; DOI: 10.1104/pp.100.4.1670

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Reconstitution and Characterization of a Calmodulin-Stimulated Ca2+-Pumping ATPase Purified from Brassica oleracea L.
Per Askerlund, David E. Evans
Plant Physiology Dec 1992, 100 (4) 1670-1681; DOI: 10.1104/pp.100.4.1670
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF

In this issue

Plant Physiology
Vol. 100, Issue 4
December 1992
  • Table of Contents
  • Index by author

More in this TOC Section

  • Short-Term Experiments on Ion Transport by Seedlings and Excised Roots
  • Photosystem II Core Phosphorylation Heterogeneity, Differential Herbicide Binding, and Regulation of Electron Transfer in Photosystem II Preparations from Spinach
  • Effects of Deuterium Oxide on Growth, Proton Extrusion, Potassium Influx, and in Vitro Plasma Membrane Activities in Maize Root Segments
Show more Membranes and Bioenergetics

Similar Articles

Our Content

  • Home
  • Current Issue
  • Plant Physiology Preview
  • Archive
  • Focus Collections
  • Classic Collections
  • The Plant Cell
  • Plant Direct
  • Plantae
  • ASPB

For Authors

  • Instructions
  • Submit a Manuscript
  • Editorial Board and Staff
  • Policies
  • Recognizing our Authors

For Reviewers

  • Instructions
  • Journal Miles
  • Policies

Other Services

  • Permissions
  • Librarian resources
  • Advertise in our journals
  • Alerts
  • RSS Feeds

Copyright © 2021 by The American Society of Plant Biologists

Powered by HighWire