Skip to main content

Main menu

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae

User menu

  • My alerts
  • Log in

Search

  • Advanced search
Plant Physiology
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae
  • My alerts
  • Log in
Plant Physiology

Advanced Search

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Follow plantphysiol on Twitter
  • Visit plantphysiol on Facebook
  • Visit Plantae
OtherCELL BIOLOGY AND SIGNAL TRANSDUCTION
You have accessRestricted Access

Modification of Phospholipid Catabolism in Microsomal Membranes of [gamma]-Irradiated Cauliflower (Brassica oleracea L.)

R. Voisine, L. P. Vezina, C. Willemot
R. Voisine
Department of Food Science and Technology, Universite Laval, Quebec, Canada, G1K 7P4 (R.V., C.W.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
L. P. Vezina
Department of Food Science and Technology, Universite Laval, Quebec, Canada, G1K 7P4 (R.V., C.W.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C. Willemot
Department of Food Science and Technology, Universite Laval, Quebec, Canada, G1K 7P4 (R.V., C.W.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site

Published May 1993. DOI: https://doi.org/10.1104/pp.102.1.213

  • Article
  • Info & Metrics
  • PDF
Loading
  • Copyright © 1993 by American Society of Plant Biologists

Abstract

Acceleration of membrane deterioration has been observed recently during storage of [gamma]-irradiated cauliflower (Brassica oleracea L., Botrytis group). In the present study, the activity of microsome-associated lipolytic enzymes was investigated in cauliflower florets exposed to 0 or 4 kilograys of [gamma] radiation and stored for 8 d at 13[deg]C. Radiolabeled breakdown products obtained from the metabolism of (16:0/18:2*)-phosphatidylcholine and (16:0/16:0)-phosphatidyl-[N-methyl-3H]choline by microsomal membranes indicated that phospholipase D (EC 3.1.4.4), phosphatidic acid phosphatase (EC 3.1.3.4), and lipolytic acyl hydrolase were associated with the membranes. The rate of phosphatidylcholine catabolism by the membranes increased slowly in control cauliflower during storage. [gamma] irradiation caused an immediate rise in phosphatidylcholine catabolism that remained higher than that of the controls during subsequent storage. Collectively, the data suggest that enhancement of membrane lipolytic activity results from free-radical-induced stress. Rapid increase of the membrane-associated phospholipase D activity may be a key event leading to accelerated membrane deterioration following [gamma] irradiation.

PreviousNext
Back to top

Table of Contents

Download PDF
Email Article

Thank you for your interest in spreading the word on Plant Physiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Modification of Phospholipid Catabolism in Microsomal Membranes of [gamma]-Irradiated Cauliflower (Brassica oleracea L.)
(Your Name) has sent you a message from Plant Physiology
(Your Name) thought you would like to see the Plant Physiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Modification of Phospholipid Catabolism in Microsomal Membranes of [gamma]-Irradiated Cauliflower (Brassica oleracea L.)
R. Voisine, L. P. Vezina, C. Willemot
Plant Physiology May 1993, 102 (1) 213-218; DOI: 10.1104/pp.102.1.213

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Modification of Phospholipid Catabolism in Microsomal Membranes of [gamma]-Irradiated Cauliflower (Brassica oleracea L.)
R. Voisine, L. P. Vezina, C. Willemot
Plant Physiology May 1993, 102 (1) 213-218; DOI: 10.1104/pp.102.1.213
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF

In this issue

Plant Physiology
Vol. 102, Issue 1
May 1993
  • Table of Contents
  • Index by author

More in this TOC Section

  • The Cell Wall of the Arabidopsis Pollen Tube—Spatial Distribution, Recycling, and Network Formation of Polysaccharides
  • Systems Dynamic Modeling of a Guard Cell Cl− Channel Mutant Uncovers an Emergent Homeostatic Network Regulating Stomatal Transpiration
  • A Comparative Study of Ethylene Growth Response Kinetics in Eudicots and Monocots Reveals a Role for Gibberellin in Growth Inhibition and Recovery
Show more CELL BIOLOGY AND SIGNAL TRANSDUCTION

Similar Articles

Our Content

  • Home
  • Current Issue
  • Plant Physiology Preview
  • Archive
  • Focus Collections
  • Classic Collections
  • The Plant Cell
  • Plant Direct
  • Plantae
  • ASPB

For Authors

  • Instructions
  • Submit a Manuscript
  • Editorial Board and Staff
  • Policies
  • Recognizing our Authors

For Reviewers

  • Instructions
  • Journal Miles
  • Policies

Other Services

  • Permissions
  • Librarian resources
  • Advertise in our journals
  • Alerts
  • RSS Feeds

Copyright © 2021 by The American Society of Plant Biologists

Powered by HighWire