- Copyright © 1993 by American Society of Plant Biologists
Abstract
The EMB-1 mRNA of carrot (Daucus carota) was isolated as an embryo abundant cDNA clone (T.H. Ulrich, E.S. Wurtele, B.J. Nikolau [1990] Nucleic Acids Res 18: 2826). Northern analyses of RNA isolated from embryos, cultured cells, and a variety of vegetative organs indicate that the EMB-1 mRNA specifically accumulates in embryos, beginning at the early stages of embryo development. In situ hybridization with both zygotic and somatic embryos show that the EMB-1 mRNA begins to accumulate at low levels throughout globular embryos. Accumulation of EMB-1 mRNA increases and becomes more localized as embryos mature; in torpedo embryos, EMB-1 mRNA preferentially accumulates in the meristematic regions, particularly the procambium. The similarity in distribution of EMB-1 mRNA in both zygotic and somatic embryos indicates that much of the spatial pattern of expression of the emb-1 gene is dependent on the developmental program of the carrot embryo and does not require maternal or endosperm factors. The EMB-1 protein (relative molecular weight 9910) is a very hydrophilic protein that is a member of a class of highly conserved proteins (typified also by the Em protein of wheat and the Lea D 19 protein of cotton) that may be ubiquitous among angiosperm embryos but whose functions are as yet unknown. The carrot genome appears to contain one or two copies of the emb-1 gene. A 1313-base pair DNA fragment of the carrot genome containing the emb-1 gene was isolated and sequenced. The gene is interrupted by a single intron of 99 base pairs. Primer extension experiments identify two EMB-1 mRNAs, differing by 6 bases at their 5[prime] ends that are transcribed from this gene.