Skip to main content

Main menu

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae

User menu

  • My alerts
  • Log in

Search

  • Advanced search
Plant Physiology
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae
  • My alerts
  • Log in
Plant Physiology

Advanced Search

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Follow plantphysiol on Twitter
  • Visit plantphysiol on Facebook
  • Visit Plantae
OtherMETABOLISM AND ENZYMOLOGY
You have accessRestricted Access

The Extraction and Assay of 1-Kestose:Sucrose Fructosyl Transferase from Leaves of Wheat

C. J. Pollock, T. L. Housley
C. J. Pollock
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
T. L. Housley
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site

Published June 1993. DOI: https://doi.org/10.1104/pp.102.2.537

  • Article
  • Info & Metrics
  • PDF
Loading
  • Copyright © 1993 by American Society of Plant Biologists

Abstract

Isolating the enzymes responsible for fructan synthesis in plants has been hampered by unsuitable assays used during purification. It is believed that there are two enzymes necessary for fructan synthesis in higher plants, one initiating synthesis utilizing sucrose as donor and the other elaborating the polymer using fructan oligomers as donor. In this paper, a rapid quantitative assay is described to measure the latter fructosyl transfer. The activity was absent from leaves that were not synthesizing fructan. Activity in crude extracts showed a hyperbolic dependence upon sucrose concentration. Activity against 1-kestose showed a pronounced optimum, suggesting that self-transfer also occurred.

PreviousNext
Back to top

Table of Contents

Download PDF
Email Article

Thank you for your interest in spreading the word on Plant Physiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
The Extraction and Assay of 1-Kestose:Sucrose Fructosyl Transferase from Leaves of Wheat
(Your Name) has sent you a message from Plant Physiology
(Your Name) thought you would like to see the Plant Physiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
The Extraction and Assay of 1-Kestose:Sucrose Fructosyl Transferase from Leaves of Wheat
C. J. Pollock, T. L. Housley
Plant Physiology Jun 1993, 102 (2) 537-539; DOI: 10.1104/pp.102.2.537

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
The Extraction and Assay of 1-Kestose:Sucrose Fructosyl Transferase from Leaves of Wheat
C. J. Pollock, T. L. Housley
Plant Physiology Jun 1993, 102 (2) 537-539; DOI: 10.1104/pp.102.2.537
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF

In this issue

Plant Physiology
Vol. 102, Issue 2
Jun 1993
  • Table of Contents
  • Index by author

More in this TOC Section

  • Distribution of Pyruvate Dehydrogenase Complex Activities between Chloroplasts and Mitochondria from Leaves of Different Species
  • Identification of Posttranslationally Modified 18-Kilodalton Protein from Rice as Eukaryotic Translation Initiation Factor 5A
  • Regulation of Maize Leaf Nitrate Reductase Activity Involves Both Gene Expression and Protein Phosphorylation
Show more Metabolism and Enzymology

Similar Articles

Our Content

  • Home
  • Current Issue
  • Plant Physiology Preview
  • Archive
  • Focus Collections
  • Classic Collections
  • The Plant Cell
  • Plant Direct
  • Plantae
  • ASPB

For Authors

  • Instructions
  • Submit a Manuscript
  • Editorial Board and Staff
  • Policies
  • Recognizing our Authors

For Reviewers

  • Instructions
  • Journal Miles
  • Policies

Other Services

  • Permissions
  • Librarian resources
  • Advertise in our journals
  • Alerts
  • RSS Feeds

Copyright © 2021 by The American Society of Plant Biologists

Powered by HighWire