Skip to main content

Main menu

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae

User menu

  • My alerts
  • Log in

Search

  • Advanced search
Plant Physiology
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae
  • My alerts
  • Log in
Plant Physiology

Advanced Search

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Follow plantphysiol on Twitter
  • Visit plantphysiol on Facebook
  • Visit Plantae
OtherENVIRONMENTAL AND STRESS PHYSIOLOGY
You have accessRestricted Access

Photoinhibition and D1 Protein Degradation in Peas Acclimated to Different Growth Irradiances

E. M. Aro, S. McCaffery, J. M. Anderson
E. M. Aro
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S. McCaffery
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J. M. Anderson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site

Published November 1993. DOI: https://doi.org/10.1104/pp.103.3.835

  • Article
  • Info & Metrics
  • PDF
Loading
  • Copyright ©1993 by American Society of Plant Biologists

Abstract

The relationship between the susceptibility of photosystem II (PSII) to photoinhibition in vivo and the rate of degradation of the D1 protein of the PSII reaction center heterodimer was investigated in leaves from pea plants (Pisum sativum L. cv Greenfeast) grown under widely contrasting irradiances. There was an inverse linear relationship between the extent of photoinhibition and chlorophyll (Chl) a/b ratios, with low-light leaves being more susceptible to high light. In the presence of the chloroplast-encoded protein synthesis inhibitor lincomycin, the differential sensitivity of the various light-acclimated pea leaves to photoinhibition was largely removed, demonstrating the importance of D1 protein turnover as the most crucial mechanism to protect against photoinhibition. In the differently light-acclimated pea leaves, the rate of D1 protein degradation (measured from [35S]methionine pulse-chase experiments) increased with increasing incident light intensities only if the light was not high enough to cause photoinhibition in vivo. Under moderate illumination, the rate constant for D1 protein degradation corresponded to the rate constant for photoinhibition in the presence of lincomycin, demonstrating a balance between photodamage to D1 protein and subsequent recovery, via D1 protein degradation, de novo synthesis of precursor D1 protein, and reassembly of functional PSII. In marked contrast, in light sufficiently high to cause photoinhibition in vivo, the rate of D1 protein degradation no longer increased concomitantly with increasing photoinhibition, suggesting that the rate of D1 protein degradation is playing a regulatory role. The extent of thylakoid stacking, indicated by the Chl a/b ratios of the differently light-acclimated pea leaves, was linearly related to the half-life of the D1 protein in strong light. We conclude that photoinhibition in vivo occurs under conditions in which the rate of D1 protein degradation can no longer be enhanced to rapidly remove irreversibly damaged D1 protein. We suggest that low-light pea leaves, with more stacked membranes and less stroma-exposed thylakoids, are more susceptible to photoinhibition in vivo mainly due to their slower rate of D1 protein degradation under sustained high light and their slower repair cycle of the photodamaged PSII centers.

PreviousNext
Back to top

Table of Contents

Download PDF
Email Article

Thank you for your interest in spreading the word on Plant Physiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Photoinhibition and D1 Protein Degradation in Peas Acclimated to Different Growth Irradiances
(Your Name) has sent you a message from Plant Physiology
(Your Name) thought you would like to see the Plant Physiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Photoinhibition and D1 Protein Degradation in Peas Acclimated to Different Growth Irradiances
E. M. Aro, S. McCaffery, J. M. Anderson
Plant Physiology Nov 1993, 103 (3) 835-843; DOI: 10.1104/pp.103.3.835

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Photoinhibition and D1 Protein Degradation in Peas Acclimated to Different Growth Irradiances
E. M. Aro, S. McCaffery, J. M. Anderson
Plant Physiology Nov 1993, 103 (3) 835-843; DOI: 10.1104/pp.103.3.835
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF

In this issue

Plant Physiology
Vol. 103, Issue 3
Nov 1993
  • Table of Contents
  • Index by author

More in this TOC Section

  • Is There a Role for Oligosaccharides in Seed Longevity? An Assessment of Intracellular Glass Stability
  • Selenium Assimilation and Volatilization from Dimethylselenoniopropionate by Indian Mustard
  • Subcellular Localization and Speciation of Nickel in Hyperaccumulator and Non-Accumulator ThlaspiSpecies
Show more Environmental and Stress Physiology

Similar Articles

Our Content

  • Home
  • Current Issue
  • Plant Physiology Preview
  • Archive
  • Focus Collections
  • Classic Collections
  • The Plant Cell
  • Plant Direct
  • Plantae
  • ASPB

For Authors

  • Instructions
  • Submit a Manuscript
  • Editorial Board and Staff
  • Policies
  • Recognizing our Authors

For Reviewers

  • Instructions
  • Journal Miles
  • Policies

Other Services

  • Permissions
  • Librarian resources
  • Advertise in our journals
  • Alerts
  • RSS Feeds

Copyright © 2021 by The American Society of Plant Biologists

Powered by HighWire