Skip to main content

Main menu

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae

User menu

  • My alerts
  • Log in
  • Log out

Search

  • Advanced search
Plant Physiology
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae
  • My alerts
  • Log in
  • Log out
Plant Physiology

Advanced Search

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Follow plantphysiol on Twitter
  • Visit plantphysiol on Facebook
  • Visit Plantae
OtherDEVELOPMENT AND GROWTH REGULATION
You have accessRestricted Access

Photoresponses of Light-Grown phyA Mutants of Arabidopsis (Phytochrome A Is Required for the Perception of Daylength Extensions)

E. Johnson, M. Bradley, N. P. Harberd, G. C. Whitelam
E. Johnson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M. Bradley
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
N. P. Harberd
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
G. C. Whitelam
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site

Published May 1994. DOI: https://doi.org/10.1104/pp.105.1.141

  • Article
  • Info & Metrics
  • PDF
Loading
  • Copyright © 1994 by American Society of Plant Biologists

Abstract

Several aspects of the photophysiology of wild-type Arabidopsis thaliana seedlings were compared with those of a phytochrome A null mutant, phyA-1, and a mutant, fhy1, that is putatively involved in the transduction of light signals from phytochrome A. Although phyA seedlings display a near wild-type phenotype when grown in white light (W), they nevertheless display several photomorphogenic abnormalities. Thus, whereas the germination of wild-type and fhy1 seeds is almost fully promoted by a pulse of red light (R) or by continuous far-red light (FR), phyA seed germination is responsive only to R. Following growth under day/night cycles, but not under continuous W, the hypocotyls of light-grown phyA and fhy1 seedlings are more elongated than those of wild-type seedlings. For seedlings grown under low red/far-red (R/FR) ratio light conditions, phyA and fhy1 seedlings display a more marked promotion of hypocotyl elongation than wild-type seedlings. Similarly, seedlings that are doubly null for phytochrome A and phytochrome B(phyA phyB) also have more elongated hypocotyls under low R/FR ratio conditions than phyB seedlings. This indicates that phytochrome A action in light-grown seedlings is antagonistic to the action of phytochrome B. Although wild-type, fhy1, and phyA seedlings flower at essentially the same time under both short-day and long-day conditions, an obvious consequence of phytochrome A deficiency is a pronounced late flowering under conditions where a short day of 8 h of fluorescent W is extended by 8 h of low-fluence-rate incandescent light. The evidence thus indicates that phytochrome A plays a role in seed germination, in the control of elongation growth of light-grown seedlings, and in the perception of daylength.

PreviousNext
Back to top

Table of Contents

Download PDF
Email Article

Thank you for your interest in spreading the word on Plant Physiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Photoresponses of Light-Grown phyA Mutants of Arabidopsis (Phytochrome A Is Required for the Perception of Daylength Extensions)
(Your Name) has sent you a message from Plant Physiology
(Your Name) thought you would like to see the Plant Physiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Photoresponses of Light-Grown phyA Mutants of Arabidopsis (Phytochrome A Is Required for the Perception of Daylength Extensions)
E. Johnson, M. Bradley, N. P. Harberd, G. C. Whitelam
Plant Physiology May 1994, 105 (1) 141-149; DOI: 10.1104/pp.105.1.141

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Photoresponses of Light-Grown phyA Mutants of Arabidopsis (Phytochrome A Is Required for the Perception of Daylength Extensions)
E. Johnson, M. Bradley, N. P. Harberd, G. C. Whitelam
Plant Physiology May 1994, 105 (1) 141-149; DOI: 10.1104/pp.105.1.141
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF

In this issue

Plant Physiology
Vol. 105, Issue 1
May 1994
  • Table of Contents
  • Index by author

More in this TOC Section

  • The rms1 Mutant of Pea Has Elevated Indole-3-Acetic Acid Levels and Reduced Root-Sap Zeatin Riboside Content but Increased Branching Controlled by Graft-Transmissible Signal(s)
  • Bacterial Cellulose-Binding Domain Modulates in Vitro Elongation of Different Plant Cells
  • Gibberellin Dose-Response Regulation of GA4 Gene Transcript Levels in Arabidopsis
Show more DEVELOPMENT AND GROWTH REGULATION

Similar Articles

Our Content

  • Home
  • Current Issue
  • Plant Physiology Preview
  • Archive
  • Focus Collections
  • Classic Collections
  • The Plant Cell
  • Plant Direct
  • Plantae
  • ASPB

For Authors

  • Instructions
  • Submit a Manuscript
  • Editorial Board and Staff
  • Policies
  • Recognizing our Authors

For Reviewers

  • Instructions
  • Journal Miles
  • Policies

Other Services

  • Permissions
  • Librarian resources
  • Advertise in our journals
  • Alerts
  • RSS Feeds

Copyright © 2021 by The American Society of Plant Biologists

Powered by HighWire