Skip to main content

Main menu

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae

User menu

  • My alerts
  • Log in

Search

  • Advanced search
Plant Physiology
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae
  • My alerts
  • Log in
Plant Physiology

Advanced Search

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Follow plantphysiol on Twitter
  • Visit plantphysiol on Facebook
  • Visit Plantae
OtherENVIRONMENTAL AND STRESS PHYSIOLOGY
You have accessRestricted Access

Responses of Ribulose-1,5-Bisphosphate Carboxylase, Cytochrome f, and Sucrose Synthesis Enzymes in Rice Leaves to Leaf Nitrogen and Their Relationships to Photosynthesis

A. Makino, H. Nakano, T. Mae
A. Makino
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
H. Nakano
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
T. Mae
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site

Published May 1994. DOI: https://doi.org/10.1104/pp.105.1.173

  • Article
  • Info & Metrics
  • PDF
Loading
  • Copyright © 1994 by American Society of Plant Biologists

Abstract

The photosynthetic gas-exchange rates and various biochemical components of photosynthesis, including ribulose-1,5-bisphosphate carboxylase (Rubisco) content, cytochrome (Cyt) f content, and the activities of two sucrose synthesis enzymes, were examined in young, fully expanded leaves of rice (Oryza sativa L.) grown hydroponically in different nitrogen concentrations. The light-saturated rate of photosynthesis at an intercellular CO2 pressure of 20 Pa (CO2-limited photosynthesis) was linearly dependent on leaf nitrogen content, but curvilinearly correlated with Rubisco content. This difference was due to a greater than proportional increase in Rubisco content relative to leaf nitrogen content and the presence of a CO2 transfer resistance between the intercellular air spaces and the carboxylation sites. CO2-limited photosynthesis was proportional to Cyt f content, one of the key components of electron transport, but was not proportional to the activities of cytosolic fructose-1,6-bisphosphatase and sucrose phosphate synthase, the two regulatory enzymes of sucrose synthesis. Light-saturated photosynthesis above an intercellular CO2 pressure of 60 Pa (CO2-saturated photosynthesis) was curvilinearly dependent on leaf nitrogen content. This CO2-saturated photosynthesis was proportional to Cyt f content in the low- and normal-nitrogen leaves, and correlated better with the activities of cytosolic fructose-1,6-bisphosphatase and sucrose phosphate synthase in the high-nitrogen leaves. The increase in the activities of these two enzymes with increasing leaf nitrogen was not as great as the increase in Cyt f content. Thus, as leaf nitrogen increased, the limitation caused by the activities of sucrose synthesis enzymes came into play, which resulted in the curvilinear relationship. However, this limitation by sucrose synthesis enzymes did not affect photosynthesis under normal ambient air.

PreviousNext
Back to top

Table of Contents

Download PDF
Email Article

Thank you for your interest in spreading the word on Plant Physiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Responses of Ribulose-1,5-Bisphosphate Carboxylase, Cytochrome f, and Sucrose Synthesis Enzymes in Rice Leaves to Leaf Nitrogen and Their Relationships to Photosynthesis
(Your Name) has sent you a message from Plant Physiology
(Your Name) thought you would like to see the Plant Physiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Responses of Ribulose-1,5-Bisphosphate Carboxylase, Cytochrome f, and Sucrose Synthesis Enzymes in Rice Leaves to Leaf Nitrogen and Their Relationships to Photosynthesis
A. Makino, H. Nakano, T. Mae
Plant Physiology May 1994, 105 (1) 173-179; DOI: 10.1104/pp.105.1.173

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Responses of Ribulose-1,5-Bisphosphate Carboxylase, Cytochrome f, and Sucrose Synthesis Enzymes in Rice Leaves to Leaf Nitrogen and Their Relationships to Photosynthesis
A. Makino, H. Nakano, T. Mae
Plant Physiology May 1994, 105 (1) 173-179; DOI: 10.1104/pp.105.1.173
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF

In this issue

Plant Physiology
Vol. 105, Issue 1
May 1994
  • Table of Contents
  • Index by author

More in this TOC Section

  • Subcellular Localization and Speciation of Nickel in Hyperaccumulator and Non-Accumulator ThlaspiSpecies
  • Calcium-Independent Activation of Salicylic Acid-Induced Protein Kinase and a 40-Kilodalton Protein Kinase by Hyperosmotic Stress
  • Enhancement of Na+ Uptake Currents, Time-Dependent Inward-Rectifying K+ Channel Currents, and K+Channel Transcripts by K+ Starvation in Wheat Root Cells
Show more Environmental and Stress Physiology

Similar Articles

Our Content

  • Home
  • Current Issue
  • Plant Physiology Preview
  • Archive
  • Focus Collections
  • Classic Collections
  • The Plant Cell
  • Plant Direct
  • Plantae
  • ASPB

For Authors

  • Instructions
  • Submit a Manuscript
  • Editorial Board and Staff
  • Policies
  • Recognizing our Authors

For Reviewers

  • Instructions
  • Journal Miles
  • Policies

Other Services

  • Permissions
  • Librarian resources
  • Advertise in our journals
  • Alerts
  • RSS Feeds

Copyright © 2021 by The American Society of Plant Biologists

Powered by HighWire