Skip to main content

Main menu

  • Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Submit a Manuscript
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae

User menu

  • My alerts
  • Log in
  • Log out

Search

  • Advanced search
Plant Physiology
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae
  • My alerts
  • Log in
  • Log out
Plant Physiology

Advanced Search

  • Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Submit a Manuscript
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Follow plantphysiol on Twitter
  • Visit plantphysiol on Facebook
  • Visit Plantae
OtherCELL BIOLOGY AND SIGNAL TRANSDUCTION
You have accessRestricted Access

Competitive Inhibition of High-Affinity Oryzalin Binding to Plant Tubulin by the Phosphoric Amide Herbicide Amiprophos-Methyl

J. V. Murthy, H. H. Kim, V. R. Hanesworth, J. D. Hugdahl, L. C. Morejohn
J. V. Murthy
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
H. H. Kim
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
V. R. Hanesworth
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J. D. Hugdahl
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
L. C. Morejohn
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site

Published May 1994. DOI: https://doi.org/10.1104/pp.105.1.309

  • Article
  • Info & Metrics
  • PDF
Loading
  • Copyright © 1994 by American Society of Plant Biologists

Abstract

Amiprophos-methyl (APM), a phosphoric amide herbicide, was previously reported to inhibit the in vitro polymerization of isolated plant tubulin (L.C. Morejohn, D.E. Fosket [1984] Science 224: 874-876), yet little other biochemical information exists concerning this compound. To characterize further the mechanism of action of APM, its interactions with tubulin and microtubules purified from cultured cells of tobacco (Nicotiana tabacum cv Bright Yellow-2) were investigated. Low micromolar concentrations of APM depolymerized preformed, taxol-stabilized tobacco microtubules. Remarkably, at the lowest APM concentration examined, many short microtubules were redistributed into fewer but 2.7-fold longer microtubules without a substantial decrease in total polymer mass, a result consistent with an end-to-end annealing of microtubules with enhanced kinetic properties. Quasi-equilibrium binding measurements showed that tobacco tubulin binds [14C]oryzalin with high affinity to produce a tubulin-oryzalin complex having a dissociation constant (Kd) = 117 nM (pH 6.9; 23[deg]C). Also, an estimated maximum molar binding stoichiometry of 0.32 indicates pharamacological heterogeneity of tobacco dimers and may be related to structural heterogeneity of tobacco tubulin subunits. APM inhibits competitively the binding of [14C]oryzalin to tubulin with an inhibition constant (Ki) = 5 [mu]M, indicating the formation of a moderate affinity tubulin-APM complex that may interact with the ends of microtubules. APM concentrations inhibiting tobacco cell growth were within the threshold range of APM concentrations that depolymerized cellular microtubules, indicating that growth inhibition is caused by microtubules depolymerization. APM had no apparent effect on microtubules in mouse 3T3 fibroblasts. Because cellular microtubules were depolymerized at APM and oryzalin concentrations below their respective Ki and Kd values, both herbicides are proposed to depolymerize microtubules by a substoichiometric endwise mechanism.

PreviousNext
Back to top

Table of Contents

Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on Plant Physiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Competitive Inhibition of High-Affinity Oryzalin Binding to Plant Tubulin by the Phosphoric Amide Herbicide Amiprophos-Methyl
(Your Name) has sent you a message from Plant Physiology
(Your Name) thought you would like to see the Plant Physiology web site.
Citation Tools
Competitive Inhibition of High-Affinity Oryzalin Binding to Plant Tubulin by the Phosphoric Amide Herbicide Amiprophos-Methyl
J. V. Murthy, H. H. Kim, V. R. Hanesworth, J. D. Hugdahl, L. C. Morejohn
Plant Physiology May 1994, 105 (1) 309-320; DOI: 10.1104/pp.105.1.309

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Competitive Inhibition of High-Affinity Oryzalin Binding to Plant Tubulin by the Phosphoric Amide Herbicide Amiprophos-Methyl
J. V. Murthy, H. H. Kim, V. R. Hanesworth, J. D. Hugdahl, L. C. Morejohn
Plant Physiology May 1994, 105 (1) 309-320; DOI: 10.1104/pp.105.1.309
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF

In this issue

Plant Physiology
Vol. 105, Issue 1
May 1994
  • Table of Contents
  • Index by author

More in this TOC Section

  • The Cell Wall of the Arabidopsis Pollen Tube—Spatial Distribution, Recycling, and Network Formation of Polysaccharides
  • Systems Dynamic Modeling of a Guard Cell Cl− Channel Mutant Uncovers an Emergent Homeostatic Network Regulating Stomatal Transpiration
  • Architecture-Based Multiscale Computational Modeling of Plant Cell Wall Mechanics to Examine the Hydrogen-Bonding Hypothesis of the Cell Wall Network Structure Model
Show more CELL BIOLOGY AND SIGNAL TRANSDUCTION

Similar Articles

Our Content

  • Home
  • Current Issue
  • Plant Physiology Preview
  • Archive
  • Focus Collections
  • Classic Collections
  • The Plant Cell
  • Plant Direct
  • Plantae
  • ASPB

For Authors

  • Instructions
  • Submit a Manuscript
  • Editorial Board and Staff
  • Policies
  • Recognizing our Authors

For Reviewers

  • Instructions
  • Journal Miles
  • Policies

Other Services

  • Permissions
  • Librarian resources
  • Advertise in our journals
  • Alerts
  • RSS Feeds

Copyright © 2019 by The American Society of Plant Biologists

Powered by HighWire