Skip to main content

Main menu

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae

User menu

  • My alerts
  • Log in
  • Log out

Search

  • Advanced search
Plant Physiology
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae
  • My alerts
  • Log in
  • Log out
Plant Physiology

Advanced Search

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Follow plantphysiol on Twitter
  • Visit plantphysiol on Facebook
  • Visit Plantae
OtherMETABOLISM AND ENZYMOLOGY
You have accessRestricted Access

Carotenoid Biosynthesis during Tomato Fruit Development (Evidence for Tissue-Specific Gene Expression)

P. D. Fraser, M. R. Truesdale, C. R. Bird, W. Schuch, P. M. Bramley
P. D. Fraser
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M. R. Truesdale
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C. R. Bird
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
W. Schuch
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P. M. Bramley
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site

Published May 1994. DOI: https://doi.org/10.1104/pp.105.1.405

  • Article
  • Info & Metrics
  • PDF
Loading
  • Copyright © 1994 by American Society of Plant Biologists

Abstract

Tomato (Lycopersicon esculentum Mill. cv Ailsa Craig) fruit, at five stages of development, have been analyzed for their carotenoid and chlorophyll (Chl) contents, in vitro activities of phytoene synthase, phytoene desaturase, and lycopene cyclase, as well as expression of the phytoene synthase (Psy) and phytoene desaturase (Pds) genes. During ripening, the total carotenoids increased with a concomitant decrease in Chl. Although the highest carotenoid content (consisting mainly of lycopene and [beta]-carotene) was found in ripe fruit, the greatest carotenogenic enzymic activities were found in green fruit. Phytoene synthase was located in the plastid stroma, whereas the metabolism of phytoene was associated with plastid membranes during all stages of fruit development. The in vitro products of phytoene desaturation altered from being predominantly phytofluence and [zeta]-carotene in chloroplasts to becoming mainly lycopene in chromoplasts. The expression of Psy was detected in breaker and ripe fruit, as well as flowers, but was not detectable by northern blot analysis in leaves or green fruits. The Pds gene transcript was barely detectable in green fruit and leaves but was expressed in flowers and breaker fruit. These results suggest that transcription of Psy and Pds is regulated developmentally, with expression being considerably elevated in chromoplast-containing tissues. Antiserum to the Synechococcus phytoene synthase cross-reacted with phytoene synthase of green fruit only on western blots and not with the enzyme from ripe fruit. In contrast, a monoclonal antibody to the Psy gene product only cross-reacted with phytoene synthase from ripe fruit. The enzymes from green and ripe fruit had different molecular masses of 42 and 38 kD, respectively. The absence of detectable Psy and Pds mRNA in green tissues using northern blot analyses, despite high levels of phytoene synthase and desaturase activity, lends support to the hypothesis of divergent genes encoding these enzymes.

PreviousNext
Back to top

Table of Contents

Download PDF
Email Article

Thank you for your interest in spreading the word on Plant Physiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Carotenoid Biosynthesis during Tomato Fruit Development (Evidence for Tissue-Specific Gene Expression)
(Your Name) has sent you a message from Plant Physiology
(Your Name) thought you would like to see the Plant Physiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Carotenoid Biosynthesis during Tomato Fruit Development (Evidence for Tissue-Specific Gene Expression)
P. D. Fraser, M. R. Truesdale, C. R. Bird, W. Schuch, P. M. Bramley
Plant Physiology May 1994, 105 (1) 405-413; DOI: 10.1104/pp.105.1.405

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Carotenoid Biosynthesis during Tomato Fruit Development (Evidence for Tissue-Specific Gene Expression)
P. D. Fraser, M. R. Truesdale, C. R. Bird, W. Schuch, P. M. Bramley
Plant Physiology May 1994, 105 (1) 405-413; DOI: 10.1104/pp.105.1.405
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF

In this issue

Plant Physiology
Vol. 105, Issue 1
May 1994
  • Table of Contents
  • Index by author

More in this TOC Section

  • Distribution of Pyruvate Dehydrogenase Complex Activities between Chloroplasts and Mitochondria from Leaves of Different Species
  • Identification of Posttranslationally Modified 18-Kilodalton Protein from Rice as Eukaryotic Translation Initiation Factor 5A
  • Regulation of Maize Leaf Nitrate Reductase Activity Involves Both Gene Expression and Protein Phosphorylation
Show more Metabolism and Enzymology

Similar Articles

Our Content

  • Home
  • Current Issue
  • Plant Physiology Preview
  • Archive
  • Focus Collections
  • Classic Collections
  • The Plant Cell
  • Plant Direct
  • Plantae
  • ASPB

For Authors

  • Instructions
  • Submit a Manuscript
  • Editorial Board and Staff
  • Policies
  • Recognizing our Authors

For Reviewers

  • Instructions
  • Journal Miles
  • Policies

Other Services

  • Permissions
  • Librarian resources
  • Advertise in our journals
  • Alerts
  • RSS Feeds

Copyright © 2021 by The American Society of Plant Biologists

Powered by HighWire