Skip to main content

Main menu

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae

User menu

  • My alerts
  • Log in
  • Log out

Search

  • Advanced search
Plant Physiology
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae
  • My alerts
  • Log in
  • Log out
Plant Physiology

Advanced Search

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Follow plantphysiol on Twitter
  • Visit plantphysiol on Facebook
  • Visit Plantae
OtherENVIRONMENTAL AND STRESS PHYSIOLOGY
You have accessRestricted Access

Genetic Enhancement of Cold Tolerance by Expression of a Gene for Chloroplast [omega]-3 Fatty Acid Desaturase in Transgenic Tobacco

H. Kodama, T. Hamada, G. Horiguchi, M. Nishimura, K. Iba
H. Kodama
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
T. Hamada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
G. Horiguchi
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M. Nishimura
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
K. Iba
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site

Published June 1994. DOI: https://doi.org/10.1104/pp.105.2.601

  • Article
  • Info & Metrics
  • PDF
Loading
  • Copyright © 1994 by American Society of Plant Biologists

Abstract

The increased production of trienoic fatty acids, hexadecatrienoic (16:3) and linolenic (18:3) acids, is a response connected with cold acclimation of higher plants and is thought to protect plant cells against cold damage. Transgenic tobacco (Nicotiana tabacum cv SR1) plants that contain increased levels of 16:3 and 18:3 fatty acids, and correspondingly decreased levels of their precursors, hexadecadienoic and linoleic acids, were engineered by introduction of a chloroplast [omega]-3 fatty acid desaturase gene (the fad7 gene) isolated from Arabidopsis thaliana. When exposed to 1[deg]C for 7 d and then cultured at 25[deg]C, the suppression of leaf growth observed in the wild-type plants was significantly alleviated in the transgenic plants with the fad7 gene. The low-temperature- induced chlorosis was also much reduced in the plants transformed with the fad7 gene. These results indicate that increased levels of trienoic fatty acids in genetically engineered plants enhance cold tolerance.

PreviousNext
Back to top

Table of Contents

Download PDF
Email Article

Thank you for your interest in spreading the word on Plant Physiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Genetic Enhancement of Cold Tolerance by Expression of a Gene for Chloroplast [omega]-3 Fatty Acid Desaturase in Transgenic Tobacco
(Your Name) has sent you a message from Plant Physiology
(Your Name) thought you would like to see the Plant Physiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Genetic Enhancement of Cold Tolerance by Expression of a Gene for Chloroplast [omega]-3 Fatty Acid Desaturase in Transgenic Tobacco
H. Kodama, T. Hamada, G. Horiguchi, M. Nishimura, K. Iba
Plant Physiology Jun 1994, 105 (2) 601-605; DOI: 10.1104/pp.105.2.601

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Genetic Enhancement of Cold Tolerance by Expression of a Gene for Chloroplast [omega]-3 Fatty Acid Desaturase in Transgenic Tobacco
H. Kodama, T. Hamada, G. Horiguchi, M. Nishimura, K. Iba
Plant Physiology Jun 1994, 105 (2) 601-605; DOI: 10.1104/pp.105.2.601
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF

In this issue

Plant Physiology
Vol. 105, Issue 2
Jun 1994
  • Table of Contents
  • Index by author

More in this TOC Section

  • Is There a Role for Oligosaccharides in Seed Longevity? An Assessment of Intracellular Glass Stability
  • Selenium Assimilation and Volatilization from Dimethylselenoniopropionate by Indian Mustard
  • Subcellular Localization and Speciation of Nickel in Hyperaccumulator and Non-Accumulator ThlaspiSpecies
Show more Environmental and Stress Physiology

Similar Articles

Our Content

  • Home
  • Current Issue
  • Plant Physiology Preview
  • Archive
  • Focus Collections
  • Classic Collections
  • The Plant Cell
  • Plant Direct
  • Plantae
  • ASPB

For Authors

  • Instructions
  • Submit a Manuscript
  • Editorial Board and Staff
  • Policies
  • Recognizing our Authors

For Reviewers

  • Instructions
  • Journal Miles
  • Policies

Other Services

  • Permissions
  • Librarian resources
  • Advertise in our journals
  • Alerts
  • RSS Feeds

Copyright © 2021 by The American Society of Plant Biologists

Powered by HighWire