Skip to main content

Main menu

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae

User menu

  • My alerts
  • Log in

Search

  • Advanced search
Plant Physiology
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae
  • My alerts
  • Log in
Plant Physiology

Advanced Search

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Follow plantphysiol on Twitter
  • Visit plantphysiol on Facebook
  • Visit Plantae
OtherMETABOLISM AND ENZYMOLOGY
You have accessRestricted Access

Incorporation of Label from 13C-, 2H-, and 15N-Labeled Methionine Molecules during the Biosynthesis of 2[prime]-Deoxymugineic Acid in Roots of Wheat

J. F. Ma, K. Nomoto
J. F. Ma
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
K. Nomoto
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site

Published June 1994. DOI: https://doi.org/10.1104/pp.105.2.607

  • Article
  • Info & Metrics
  • PDF
Loading
  • Copyright © 1994 by American Society of Plant Biologists

Abstract

The biosynthetic pathway of 2[prime]-deoxymugineic acid, a key phytosiderophore, was investigated by feeding 13C-, 2H-, and 15N-labeled methionine, the first precursor, to the roots of hydroponically cultured wheat (Triticum aestivum L. cv Minori). The incorporation of label from each methionine species was observed during their conversion to 2[prime]-deoxymugineic acid, using 2H-, 15N-, and 13C-nuclear magnetic resonance (NMR). L-[1-13C]Methionine (99% 13C) was efficiently incorporated, resulting in 13C enrichment of the three carboxyl groups of 2[prime]-deoxymugineic acid. Use of D,L-[15N]methionine (95% 15N) resulted in 15N enrichment of 2[prime]-deoxymugineic acid at the azetidine ring nitrogen and the secondary amino nitrogen. When D,L-[2,3,3,-2H3-S-methyl-2H3]methionine (98.2% 2H) was fed to the roots, 2H-NMR results indicated that only six deuterium atoms were incorporated, and that the deuterium atom from the C-2 position of each methionine was almost completely lost. [2,2,3,3-2H4]1-Aminocyclopropane-1-carboxylic acid (98% 2H) was not incorporated into 2[prime]-deoxymugineic acid. These data and our previous findings demonstrated that only the deuterium atom from the C-2 position of L-methionine was lost, and that other atoms were completely incorporated when three molecules of methionine were converted to 2[prime]-deoxymugineic acid. These observations are consistent with the conversion of L-methionine to azetidine-2-carboxylic acid, suggesting that L-methionine is first converted to azetidine-2-carboxylic acid during biosynthesis leading to 2[prime]-deoxymugineic acid. Based on these results, a hypothetical pathway from L-methionine to 2[prime]-deoxymugineic acid was postulated.

PreviousNext
Back to top

Table of Contents

Download PDF
Email Article

Thank you for your interest in spreading the word on Plant Physiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Incorporation of Label from 13C-, 2H-, and 15N-Labeled Methionine Molecules during the Biosynthesis of 2[prime]-Deoxymugineic Acid in Roots of Wheat
(Your Name) has sent you a message from Plant Physiology
(Your Name) thought you would like to see the Plant Physiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Incorporation of Label from 13C-, 2H-, and 15N-Labeled Methionine Molecules during the Biosynthesis of 2[prime]-Deoxymugineic Acid in Roots of Wheat
J. F. Ma, K. Nomoto
Plant Physiology Jun 1994, 105 (2) 607-610; DOI: 10.1104/pp.105.2.607

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Incorporation of Label from 13C-, 2H-, and 15N-Labeled Methionine Molecules during the Biosynthesis of 2[prime]-Deoxymugineic Acid in Roots of Wheat
J. F. Ma, K. Nomoto
Plant Physiology Jun 1994, 105 (2) 607-610; DOI: 10.1104/pp.105.2.607
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF

In this issue

Plant Physiology
Vol. 105, Issue 2
Jun 1994
  • Table of Contents
  • Index by author

More in this TOC Section

  • Distribution of Pyruvate Dehydrogenase Complex Activities between Chloroplasts and Mitochondria from Leaves of Different Species
  • Identification of Posttranslationally Modified 18-Kilodalton Protein from Rice as Eukaryotic Translation Initiation Factor 5A
  • Regulation of Maize Leaf Nitrate Reductase Activity Involves Both Gene Expression and Protein Phosphorylation
Show more Metabolism and Enzymology

Similar Articles

Our Content

  • Home
  • Current Issue
  • Plant Physiology Preview
  • Archive
  • Focus Collections
  • Classic Collections
  • The Plant Cell
  • Plant Direct
  • Plantae
  • ASPB

For Authors

  • Instructions
  • Submit a Manuscript
  • Editorial Board and Staff
  • Policies
  • Recognizing our Authors

For Reviewers

  • Instructions
  • Journal Miles
  • Policies

Other Services

  • Permissions
  • Librarian resources
  • Advertise in our journals
  • Alerts
  • RSS Feeds

Copyright © 2021 by The American Society of Plant Biologists

Powered by HighWire