Skip to main content

Main menu

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae

User menu

  • My alerts
  • Log in

Search

  • Advanced search
Plant Physiology
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae
  • My alerts
  • Log in
Plant Physiology

Advanced Search

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Follow plantphysiol on Twitter
  • Visit plantphysiol on Facebook
  • Visit Plantae
OtherMETABOLISM AND ENZYMOLOGY
You have accessRestricted Access

Uridine Diphosphate Glucose Metabolism and Callose Synthesis in Cultured Pollen Tubes of Nicotiana alata Link et Otto

H. Schlupmann, A. Bacic, S. M. Read
H. Schlupmann
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A. Bacic
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S. M. Read
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site

Published June 1994. DOI: https://doi.org/10.1104/pp.105.2.659

  • Article
  • Info & Metrics
  • PDF
Loading
  • Copyright © 1994 by American Society of Plant Biologists

Abstract

Membrane preparations from cultured pollen tubes of Nicotiana alata Link et Otto contain a Ca2+ -independent (1–3)-[beta]-D-glucan (callose) synthase activity that has a low affinity for UDP-glucose, even when activated by treatment with trypsin (H. Schlupmann, A. Basic, S.M. Read [1993] Planta 191: 470–481). Therefore, we investigated whether UDP-glucose was a likely substrate for callose synthesis in actively growing pollen tubes. Deposition of (1–3)-[beta]-glucan occurred at a constant rate, 1.4 to 1.7 nmol glucose min-1, in tubes from 1 mg of pollen from 3 h after germination; however, the rate of incorporation of radioactivity from exogenous [14C]-sucrose into wall polymers was not constant, but increased until at least 8 h after germination, probably due to decreasing use of internal reserves. UDP-glucose was a prominent ultraviolet-absorbing metabolite in pollen-tube extracts, with 1.6 nmol present in tubes from 1 mg of pollen, giving a calculated cytoplasmic concentration of approximately 3.5 mM. Radioactivity from [14C]-sucrose was rapidly incorporated into sugar monophosphates and UDP-glucose by the growing tubes, consistent with a turnover time for UDP-glucose of less than 1 min; the specific radioactivity of extracted UDP-[14C]glucose was equal to that calculated from the rate of incorporation of [14C]sucrose into wall glucans. Large amounts of less metabolically active neutral sugars were also present. The rate of synthesis of (1–3)-[beta]-glucan by nontrypsin-treated pollen-tube membrane preparations incubated with 3.5 mM UDP-glucose and a [beta]-glucoside activator was slightly greater than the rate of deposition of (1–3)-[beta]-glucan by intact pollen tubes. These data are used to assess the physiological significance of proteolytic activation of pollen-tube callose synthase.

PreviousNext
Back to top

Table of Contents

Download PDF
Email Article

Thank you for your interest in spreading the word on Plant Physiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Uridine Diphosphate Glucose Metabolism and Callose Synthesis in Cultured Pollen Tubes of Nicotiana alata Link et Otto
(Your Name) has sent you a message from Plant Physiology
(Your Name) thought you would like to see the Plant Physiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Uridine Diphosphate Glucose Metabolism and Callose Synthesis in Cultured Pollen Tubes of Nicotiana alata Link et Otto
H. Schlupmann, A. Bacic, S. M. Read
Plant Physiology Jun 1994, 105 (2) 659-670; DOI: 10.1104/pp.105.2.659

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Uridine Diphosphate Glucose Metabolism and Callose Synthesis in Cultured Pollen Tubes of Nicotiana alata Link et Otto
H. Schlupmann, A. Bacic, S. M. Read
Plant Physiology Jun 1994, 105 (2) 659-670; DOI: 10.1104/pp.105.2.659
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF

In this issue

Plant Physiology
Vol. 105, Issue 2
Jun 1994
  • Table of Contents
  • Index by author

More in this TOC Section

  • Distribution of Pyruvate Dehydrogenase Complex Activities between Chloroplasts and Mitochondria from Leaves of Different Species
  • Identification of Posttranslationally Modified 18-Kilodalton Protein from Rice as Eukaryotic Translation Initiation Factor 5A
  • Regulation of Maize Leaf Nitrate Reductase Activity Involves Both Gene Expression and Protein Phosphorylation
Show more Metabolism and Enzymology

Similar Articles

Our Content

  • Home
  • Current Issue
  • Plant Physiology Preview
  • Archive
  • Focus Collections
  • Classic Collections
  • The Plant Cell
  • Plant Direct
  • Plantae
  • ASPB

For Authors

  • Instructions
  • Submit a Manuscript
  • Editorial Board and Staff
  • Policies
  • Recognizing our Authors

For Reviewers

  • Instructions
  • Journal Miles
  • Policies

Other Services

  • Permissions
  • Librarian resources
  • Advertise in our journals
  • Alerts
  • RSS Feeds

Copyright © 2021 by The American Society of Plant Biologists

Powered by HighWire