Skip to main content

Main menu

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae

User menu

  • My alerts
  • Log in
  • Log out

Search

  • Advanced search
Plant Physiology
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae
  • My alerts
  • Log in
  • Log out
Plant Physiology

Advanced Search

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Follow plantphysiol on Twitter
  • Visit plantphysiol on Facebook
  • Visit Plantae
OtherCELL BIOLOGY AND SIGNAL TRANSDUCTION
You have accessRestricted Access

Inward-Rectifying K+ Channels in Root Hairs of Wheat (A Mechanism for Aluminum-Sensitive Low-Affinity K+ Uptake and Membrane Potential Control)

W. Gassmann, J. I. Schroeder
W. Gassmann
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J. I. Schroeder
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site

Published August 1994. DOI: https://doi.org/10.1104/pp.105.4.1399

  • Article
  • Info & Metrics
  • PDF
Loading
  • Copyright © 1994 by American Society of Plant Biologists

Abstract

K+ is the most abundant cation in cells of higher plants, and it plays vital roles in plant growth and development. Extensive studies on the kinetics of K+ uptake in roots have shown that K+ uptake is mediated by at least two transport mechanisms, one with a high and one with a low affinity for K+. However, the precise molecular mechanisms of K+ uptake from soils into root epidermal cells remain unknown. In the present study we have pursued the biophysical identification and characterization of mechanisms of K+ uptake into single root hairs of wheat (Triticum aestivum L.), since root hairs constitute an important site of nutrient uptake from the soil. These patch-clamp studies showed activation of a large inward current carried by K+ ions into root hairs at membrane potentials more negative than -75 mV. This K+ influx current was mediated by hyperpolarization-activated K+-selective ion channels, with a selectivity sequence for monovalent cations of K+ < Rb+ [almost equal to] NH4+ << Na+ [almost equal to] Li+ < Cs+. Kinetic analysis of K+ channel currents yielded an apparent K+ equilibrium dissociation constant (Km) of [almost equal to]8.8 mM, which closely correlates to the major component of low-affinity K+ uptake. These channels did not inactivate during prolonged stimulation and would thus enable long-term K+ uptake driven by the plasma membrane proton-extruding pump. Aluminum, which is known to inhibit cation uptake at the root epidermis, blocked these inward-rectifying K+ channels with half-maximal current inhibition at [almost equal to]8 [mu]M free Al3+. Aluminum block of K+ channels at these Al3+ concentrations correlates closely to Al3+ phytotoxicity. It is concluded that inward-rectifying K+ channels in root hairs can function as both a physiologically important mechanism for low-affinity K+ uptake and as regulators of membrane potential. The identification of this mechanism is a major step toward a detailed molecular characterization of the multiple components involved in K+ uptake, transport, and membrane potential control in root epidermal cells.

PreviousNext
Back to top

Table of Contents

Download PDF
Email Article

Thank you for your interest in spreading the word on Plant Physiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Inward-Rectifying K+ Channels in Root Hairs of Wheat (A Mechanism for Aluminum-Sensitive Low-Affinity K+ Uptake and Membrane Potential Control)
(Your Name) has sent you a message from Plant Physiology
(Your Name) thought you would like to see the Plant Physiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Inward-Rectifying K+ Channels in Root Hairs of Wheat (A Mechanism for Aluminum-Sensitive Low-Affinity K+ Uptake and Membrane Potential Control)
W. Gassmann, J. I. Schroeder
Plant Physiology Aug 1994, 105 (4) 1399-1408; DOI: 10.1104/pp.105.4.1399

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Inward-Rectifying K+ Channels in Root Hairs of Wheat (A Mechanism for Aluminum-Sensitive Low-Affinity K+ Uptake and Membrane Potential Control)
W. Gassmann, J. I. Schroeder
Plant Physiology Aug 1994, 105 (4) 1399-1408; DOI: 10.1104/pp.105.4.1399
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF

In this issue

Plant Physiology
Vol. 105, Issue 4
Aug 1994
  • Table of Contents
  • Index by author

More in this TOC Section

  • The Cell Wall of the Arabidopsis Pollen Tube—Spatial Distribution, Recycling, and Network Formation of Polysaccharides
  • Systems Dynamic Modeling of a Guard Cell Cl− Channel Mutant Uncovers an Emergent Homeostatic Network Regulating Stomatal Transpiration
  • Vacuolar CAX1 and CAX3 Influence Auxin Transport in Guard Cells via Regulation of Apoplastic pH
Show more CELL BIOLOGY AND SIGNAL TRANSDUCTION

Similar Articles

Our Content

  • Home
  • Current Issue
  • Plant Physiology Preview
  • Archive
  • Focus Collections
  • Classic Collections
  • The Plant Cell
  • Plant Direct
  • Plantae
  • ASPB

For Authors

  • Instructions
  • Submit a Manuscript
  • Editorial Board and Staff
  • Policies
  • Recognizing our Authors

For Reviewers

  • Instructions
  • Journal Miles
  • Policies

Other Services

  • Permissions
  • Librarian resources
  • Advertise in our journals
  • Alerts
  • RSS Feeds

Copyright © 2021 by The American Society of Plant Biologists

Powered by HighWire