Skip to main content

Main menu

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae

User menu

  • My alerts
  • Log in
  • Log out

Search

  • Advanced search
Plant Physiology
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae
  • My alerts
  • Log in
  • Log out
Plant Physiology

Advanced Search

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Follow plantphysiol on Twitter
  • Visit plantphysiol on Facebook
  • Visit Plantae
OtherCELL BIOLOGY AND SIGNAL TRANSDUCTION
You have accessRestricted Access

The Plasma Membrane of Arabidopsis thaliana Contains a Mercury-Insensitive Aquaporin That Is a Homolog of the Tonoplast Water Channel Protein TIP

M. J. Daniels, T. E. Mirkov, M. J. Chrispeels
M. J. Daniels
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
T. E. Mirkov
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M. J. Chrispeels
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site

Published December 1994. DOI: https://doi.org/10.1104/pp.106.4.1325

  • Article
  • Info & Metrics
  • PDF
Loading
  • Copyright © 1994 by American Society of Plant Biologists

Abstract

Plant cells contain proteins that are members of the major intrinsic protein (MIP) family, an ancient family of membrane channel proteins characterized by six membrane-spanning domains and two asparagine-proline-alanine (NPA) amino acid motifs in the two halves of the protein. We recently demonstrated that [gamma]-TIP, one of the MIP homologs found in the vacuolar membrane of plant cells, is an aquaporin or water channel protein (C. Maurel, J. Reizer, J.I. Schroeder, M.J. Chrispeels [1993] EMBO J 12: 2241–2247). RD28, another MIP homolog in Arabidopsis thaliana, was first identified as being encoded by a turgor-responsive transcript. To find out if RD28 is a water channel protein, rd28 cRNA was injected into Xenopus laevis oocytes. Expression of RD28 caused a 10- to 15-fold increase in the osmotic water permeability of the oocytes, indicating that the protein creates water channels in the plasma membrane of the oocytes and is an aquaporin just like its homolog [gamma]-TIP. Although RD28 has several cysteine residues, its activity is not inhibited by mercury, and in this respect it differs from [gamma]-TIP and all but one of the mammalian water channels that have been described. Introduction of a cysteine residue next to the second conserved NPA motif creates a mercury-sensitive water channel, suggesting that this conserved loop is critical to the activity of the protein. Antibodies directed at the C terminus of RD28 were used in combination with a two-phase partitioning method to demonstrate that RD28 is located in the plasma membrane. The protein is present in leaves and roots of well-watered plants, suggesting that its presence in plants does not require a specific desiccation regime. These results demonstrate that plant cells contain constitutively expressed aquaporins in their plasma membranes (RD28), as well as in their tonoplasts ([gamma]-TIP).

PreviousNext
Back to top

Table of Contents

Download PDF
Email Article

Thank you for your interest in spreading the word on Plant Physiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
The Plasma Membrane of Arabidopsis thaliana Contains a Mercury-Insensitive Aquaporin That Is a Homolog of the Tonoplast Water Channel Protein TIP
(Your Name) has sent you a message from Plant Physiology
(Your Name) thought you would like to see the Plant Physiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
The Plasma Membrane of Arabidopsis thaliana Contains a Mercury-Insensitive Aquaporin That Is a Homolog of the Tonoplast Water Channel Protein TIP
M. J. Daniels, T. E. Mirkov, M. J. Chrispeels
Plant Physiology Dec 1994, 106 (4) 1325-1333; DOI: 10.1104/pp.106.4.1325

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
The Plasma Membrane of Arabidopsis thaliana Contains a Mercury-Insensitive Aquaporin That Is a Homolog of the Tonoplast Water Channel Protein TIP
M. J. Daniels, T. E. Mirkov, M. J. Chrispeels
Plant Physiology Dec 1994, 106 (4) 1325-1333; DOI: 10.1104/pp.106.4.1325
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF

In this issue

Plant Physiology
Vol. 106, Issue 4
Dec 1994
  • Table of Contents
  • Index by author

More in this TOC Section

  • The Cell Wall of the Arabidopsis Pollen Tube—Spatial Distribution, Recycling, and Network Formation of Polysaccharides
  • Systems Dynamic Modeling of a Guard Cell Cl− Channel Mutant Uncovers an Emergent Homeostatic Network Regulating Stomatal Transpiration
  • Vacuolar CAX1 and CAX3 Influence Auxin Transport in Guard Cells via Regulation of Apoplastic pH
Show more CELL BIOLOGY AND SIGNAL TRANSDUCTION

Similar Articles

Our Content

  • Home
  • Current Issue
  • Plant Physiology Preview
  • Archive
  • Focus Collections
  • Classic Collections
  • The Plant Cell
  • Plant Direct
  • Plantae
  • ASPB

For Authors

  • Instructions
  • Submit a Manuscript
  • Editorial Board and Staff
  • Policies
  • Recognizing our Authors

For Reviewers

  • Instructions
  • Journal Miles
  • Policies

Other Services

  • Permissions
  • Librarian resources
  • Advertise in our journals
  • Alerts
  • RSS Feeds

Copyright © 2021 by The American Society of Plant Biologists

Powered by HighWire