Skip to main content

Main menu

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae

User menu

  • My alerts
  • Log in
  • Log out

Search

  • Advanced search
Plant Physiology
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae
  • My alerts
  • Log in
  • Log out
Plant Physiology

Advanced Search

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Follow plantphysiol on Twitter
  • Visit plantphysiol on Facebook
  • Visit Plantae
OtherMETABOLISM AND ENZYMOLOGY
You have accessRestricted Access

Floral Scent Production in Clarkia (Onagraceae) (I. Localization and Developmental Modulation of Monoterpene Emission and Linalool Synthase Activity)

E. Pichersky, R. A. Raguso, E. Lewinsohn, R. Croteau
E. Pichersky
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R. A. Raguso
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
E. Lewinsohn
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R. Croteau
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site

Published December 1994. DOI: https://doi.org/10.1104/pp.106.4.1533

  • Article
  • Info & Metrics
  • PDF
Loading
  • Copyright © 1994 by American Society of Plant Biologists

Abstract

The flowers of many plants emit volatile compounds as a means of attracting pollinators. We have previously shown that the strong, sweet fragrance of Clarkia breweri (Onagraceae), an annual plant native to California, consists of approximately 8 to 12 volatile compounds[mdash]three monoterpenes and nine benzoate derivatives (R.A. Raguso and E. Pichersky [1994] Plant Syst Evol [in press]). Here we report that the monoterpene alcohol linalool is synthesized and emitted mostly by petals but to a lesser extent also by the pistil and stamens. Two linalool oxides are produced and emitted almost exclusively by the pistil. These three monoterpenes are first discernible in mature unopened buds, and their tissue levels are highest during the first 2 to 3 d after anthesis. Levels of emission by the different floral parts throughout the life span of the flower were correlated with levels of these monoterpenes in the respective tissues, suggesting that these monoterpenes are emitted soon after their synthesis. Activity of linalool synthase, an enzyme that converts the ubiquitous C10 isoprenoid intermediate geranyl pyrophosphate to linalool, was highest in petals, the organ that emits most of the linalool. However, linalool synthase activity on a fresh weight basis was highest in stigma and style (i.e. the pistil). Most of the linalool produced in the pistil is apparently converted into linalool oxides. Lower levels (0.1%) of monoterpene emission and linalool synthase activity are found in the stigma of Clarkia concinna, a nonscented relative of C. breweri, suggesting that monoterpenes may have other functions in the flower in addition to attracting pollinators.

PreviousNext
Back to top

Table of Contents

Download PDF
Email Article

Thank you for your interest in spreading the word on Plant Physiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Floral Scent Production in Clarkia (Onagraceae) (I. Localization and Developmental Modulation of Monoterpene Emission and Linalool Synthase Activity)
(Your Name) has sent you a message from Plant Physiology
(Your Name) thought you would like to see the Plant Physiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Floral Scent Production in Clarkia (Onagraceae) (I. Localization and Developmental Modulation of Monoterpene Emission and Linalool Synthase Activity)
E. Pichersky, R. A. Raguso, E. Lewinsohn, R. Croteau
Plant Physiology Dec 1994, 106 (4) 1533-1540; DOI: 10.1104/pp.106.4.1533

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Floral Scent Production in Clarkia (Onagraceae) (I. Localization and Developmental Modulation of Monoterpene Emission and Linalool Synthase Activity)
E. Pichersky, R. A. Raguso, E. Lewinsohn, R. Croteau
Plant Physiology Dec 1994, 106 (4) 1533-1540; DOI: 10.1104/pp.106.4.1533
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF

In this issue

Plant Physiology
Vol. 106, Issue 4
Dec 1994
  • Table of Contents
  • Index by author

More in this TOC Section

  • A Novel Metabolic Pathway for Indole-3-Acetic Acid in Apical Shoots of Populus tremula (L.) x Populus tremuloides (Michx.)
  • Biosynthesis of Cardiolipin in Plant Mitochondria
  • Inhibition of Threonine Dehydratase Is Herbicidal
Show more Metabolism and Enzymology

Similar Articles

Our Content

  • Home
  • Current Issue
  • Plant Physiology Preview
  • Archive
  • Focus Collections
  • Classic Collections
  • The Plant Cell
  • Plant Direct
  • Plantae
  • ASPB

For Authors

  • Instructions
  • Submit a Manuscript
  • Editorial Board and Staff
  • Policies
  • Recognizing our Authors

For Reviewers

  • Instructions
  • Journal Miles
  • Policies

Other Services

  • Permissions
  • Librarian resources
  • Advertise in our journals
  • Alerts
  • RSS Feeds

Copyright © 2021 by The American Society of Plant Biologists

Powered by HighWire