Skip to main content

Main menu

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae

User menu

  • My alerts
  • Log in
  • Log out

Search

  • Advanced search
Plant Physiology
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae
  • My alerts
  • Log in
  • Log out
Plant Physiology

Advanced Search

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Follow plantphysiol on Twitter
  • Visit plantphysiol on Facebook
  • Visit Plantae
OtherCELL BIOLOGY AND SIGNAL TRANSDUCTION
You have accessRestricted Access

Accumulation of 15-Kilodalton Zein in Novel Protein Bodies in Transgenic Tobacco

S. Bagga, H. Adams, J. D. Kemp, C. Sengupta-Gopalan
S. Bagga
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
H. Adams
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J. D. Kemp
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C. Sengupta-Gopalan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site

Published January 1995. DOI: https://doi.org/10.1104/pp.107.1.13

  • Article
  • Info & Metrics
  • PDF
Loading
  • Copyright © 1995 by American Society of Plant Biologists

Abstract

Zeins, the seed storage proteins of maize, are a group of alcohol-soluble polypeptides of different molecular masses that share a similar amino acid composition but vary in their sulfur amino acid composition. They are synthesized on the rough endoplasmic reticulum (ER) in the endosperm and are stored in ER-derived protein bodies. Our goal is to balance the amino acid composition of the methionine-deficient forage legumes by expressing the sulfur amino acid-rich 15-kD zeins in their leaves. However, it is crucial to know whether this protein would be stable in nonseed tissues of transgenic plants. The major focus of this paper is to compare the accumulation pattern of the 15-kD zein protein with a vacuolar targeted seed protein, [beta]-phaseolin, in nonseed tissues and to determine the basis for its stability/instability. We have introduced the 15-kD zein and bean [beta]-phaseolin-coding sequences behind the 35S cauliflower mosaic virus promoter into tobacco (Nicotiana tabacum) and analyzed the protein's accumulation pattern in different tissues. Our results demonstrate that the 15-kD seed protein is stable not only in seeds but in all nonseed tissues tested, whereas the [beta]-phaseolin protein accumulated only in mid- and postmaturation seeds. Interestingly, zein accumulates in novel protein bodies both in the seeds and in nonseed tissues. We attribute the instability of the [beta]-phaseolin protein in nonseed tissues to the fact that it is targeted to protease-rich vacuoles. The stability of the 15-kD zein could be attributed to its retention in the ER or to the protease-resistant nature of the protein.

PreviousNext
Back to top

Table of Contents

Download PDF
Email Article

Thank you for your interest in spreading the word on Plant Physiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Accumulation of 15-Kilodalton Zein in Novel Protein Bodies in Transgenic Tobacco
(Your Name) has sent you a message from Plant Physiology
(Your Name) thought you would like to see the Plant Physiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Accumulation of 15-Kilodalton Zein in Novel Protein Bodies in Transgenic Tobacco
S. Bagga, H. Adams, J. D. Kemp, C. Sengupta-Gopalan
Plant Physiology Jan 1995, 107 (1) 13-23; DOI: 10.1104/pp.107.1.13

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Accumulation of 15-Kilodalton Zein in Novel Protein Bodies in Transgenic Tobacco
S. Bagga, H. Adams, J. D. Kemp, C. Sengupta-Gopalan
Plant Physiology Jan 1995, 107 (1) 13-23; DOI: 10.1104/pp.107.1.13
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF

In this issue

Plant Physiology
Vol. 107, Issue 1
Jan 1995
  • Table of Contents
  • Index by author

More in this TOC Section

  • The Cell Wall of the Arabidopsis Pollen Tube—Spatial Distribution, Recycling, and Network Formation of Polysaccharides
  • Systems Dynamic Modeling of a Guard Cell Cl− Channel Mutant Uncovers an Emergent Homeostatic Network Regulating Stomatal Transpiration
  • Vacuolar CAX1 and CAX3 Influence Auxin Transport in Guard Cells via Regulation of Apoplastic pH
Show more CELL BIOLOGY AND SIGNAL TRANSDUCTION

Similar Articles

Our Content

  • Home
  • Current Issue
  • Plant Physiology Preview
  • Archive
  • Focus Collections
  • Classic Collections
  • The Plant Cell
  • Plant Direct
  • Plantae
  • ASPB

For Authors

  • Instructions
  • Submit a Manuscript
  • Editorial Board and Staff
  • Policies
  • Recognizing our Authors

For Reviewers

  • Instructions
  • Journal Miles
  • Policies

Other Services

  • Permissions
  • Librarian resources
  • Advertise in our journals
  • Alerts
  • RSS Feeds

Copyright © 2021 by The American Society of Plant Biologists

Powered by HighWire