Skip to main content

Main menu

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae

User menu

  • My alerts
  • Log in

Search

  • Advanced search
Plant Physiology
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae
  • My alerts
  • Log in
Plant Physiology

Advanced Search

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Follow plantphysiol on Twitter
  • Visit plantphysiol on Facebook
  • Visit Plantae
OtherBIOENERGETICS
You have accessRestricted Access

Analysis of the Pigment Stoichiometry of Pigment-Protein Complexes from Barley (Hordeum vulgare) (The Xanthophyll Cycle Intermediates Occur Mainly in the Light-Harvesting Complexes of Photosystem I and Photosystem II)

A. I. Lee, J. P. Thornber
A. I. Lee
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J. P. Thornber
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site

Published February 1995. DOI: https://doi.org/10.1104/pp.107.2.565

  • Article
  • Info & Metrics
  • PDF
Loading
  • Copyright ©1995 by American Society of Plant Biologists

Abstract

The carotenoid zeaxanthin has been implicated in a nonradiative dissipation of excess excitation energy. To determine its site of action, we have examined the location of zeaxanthin within the thylakoid membrane components. Five pigment-protein complexes were isolated with little loss of pigments: photosystem I (PSI); core complex (CC) I, the core of PSI; CC II, the core of photosystem II (PSII); light-harvesting complex (LHC) IIb, a trimer of the major light-harvesting protein of PSII; and LHC IIa, c, and d, a complex of the monomeric minor light-harvesting proteins of PSII. Zeaxanthin was found predominantly in the LHC complexes. Lesser amounts were present in the CCs possibly because these contained some extraneous LHC polypeptides. The LHC IIb trimer and the monomeric LHC II a, c, and d pigment-proteins from dark-adapted plants each contained, in addition to lutein and neoxanthin, one violax-anthin molecule but little antheraxanthin and no zeaxanthin. Following illumination, each complex had a reduced violaxanthin content, but now more antheraxanthin and zeaxanthin were present. PSI had little or no neoxanthin. The pigment content of LHC I was deduced by subtracting the pigment content of CC I from that of PSI. Our best estimate for the carotenoid content of a LHC IIb trimer from dark-adapted plants is one violaxanthin, two neoxanthins, six luteins, and 0.03 mol of antheraxanthin per mol trimer. The xanthophyll cycle occurs mainly or exclusively within the light-harvesting antennae of both photosystems.

PreviousNext
Back to top

Table of Contents

Download PDF
Email Article

Thank you for your interest in spreading the word on Plant Physiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Analysis of the Pigment Stoichiometry of Pigment-Protein Complexes from Barley (Hordeum vulgare) (The Xanthophyll Cycle Intermediates Occur Mainly in the Light-Harvesting Complexes of Photosystem I and Photosystem II)
(Your Name) has sent you a message from Plant Physiology
(Your Name) thought you would like to see the Plant Physiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Analysis of the Pigment Stoichiometry of Pigment-Protein Complexes from Barley (Hordeum vulgare) (The Xanthophyll Cycle Intermediates Occur Mainly in the Light-Harvesting Complexes of Photosystem I and Photosystem II)
A. I. Lee, J. P. Thornber
Plant Physiology Feb 1995, 107 (2) 565-574; DOI: 10.1104/pp.107.2.565

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Analysis of the Pigment Stoichiometry of Pigment-Protein Complexes from Barley (Hordeum vulgare) (The Xanthophyll Cycle Intermediates Occur Mainly in the Light-Harvesting Complexes of Photosystem I and Photosystem II)
A. I. Lee, J. P. Thornber
Plant Physiology Feb 1995, 107 (2) 565-574; DOI: 10.1104/pp.107.2.565
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF

In this issue

Plant Physiology
Vol. 107, Issue 2
Feb 1995
  • Table of Contents
  • Index by author

More in this TOC Section

  • A Novel Gene, pmgA, Specifically Regulates Photosystem Stoichiometry in the CyanobacteriumSynechocystis Species PCC 6803 in Response to High Light
  • Analysis of Respiratory Chain Regulation in Roots of Soybean Seedlings
  • Characterization of a Red Beet Protein Homologous to the Essential 36-Kilodalton Subunit of the Yeast V-Type ATPase
Show more BIOENERGETICS

Similar Articles

Our Content

  • Home
  • Current Issue
  • Plant Physiology Preview
  • Archive
  • Focus Collections
  • Classic Collections
  • The Plant Cell
  • Plant Direct
  • Plantae
  • ASPB

For Authors

  • Instructions
  • Submit a Manuscript
  • Editorial Board and Staff
  • Policies
  • Recognizing our Authors

For Reviewers

  • Instructions
  • Journal Miles
  • Policies

Other Services

  • Permissions
  • Librarian resources
  • Advertise in our journals
  • Alerts
  • RSS Feeds

Copyright © 2021 by The American Society of Plant Biologists

Powered by HighWire