Skip to main content

Main menu

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae

User menu

  • My alerts
  • Log in
  • Log out

Search

  • Advanced search
Plant Physiology
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae
  • My alerts
  • Log in
  • Log out
Plant Physiology

Advanced Search

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Follow plantphysiol on Twitter
  • Visit plantphysiol on Facebook
  • Visit Plantae
OtherDEVELOPMENT AND GROWTH REGULATION
You have accessRestricted Access

Genetic Regulation of Development in Sorghum bicolor (IX. The ma3R Allele Disrupts Diurnal Control of Gibberellin Biosynthesis)

K. R. Foster, P. W. Morgan
K. R. Foster
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P. W. Morgan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site

Published May 1995. DOI: https://doi.org/10.1104/pp.108.1.337

  • Article
  • Info & Metrics
  • PDF
Loading
  • Copyright © 1995 by American Society of Plant Biologists

Abstract

The diurnal regulation of gibberellin (GA) concentrations in Sorghum bicolor was studied in a mutant lacking a light-stable 123-kD phytochrome (ma3Rma3R), wild-type (ma3ma3,Ma3Ma3), and heterozygous (ma3ma3R) cultivars. GAs were determined in shoots of 14-d-old plants by gas chromatography-selected ion-monitoring-mass spectrometry. GA12 levels fluctuated rhythmically in Ma3Ma3, ma3ma3, and ,ma3Rma3R; Peak levels occured 3 to 9 h after lights-on. In some experiments, GA53 levels followed a similar pattern. There was no rhythmicity in levels of GA19 and GA8 in any genotype. In ma3ma3 and Ma3Ma3, GA20 levels increased at lights-on, peaked in the afternoon, and decreased to minimum levels in darkness. In ma3Rma3R, peak GA20 levels occured at lights-on, 9 h earlier than in the wild-type genotypes. The pattern for GA1 levels closely followed GA20 levels in all cultivars. One copy of ma3 restored near wild-type regulation of GA20 levels. GA rhythms persisted in 25-d-old ma3ma3 plants. Since absence of the 123-kD phytochrome disrupted diurnal regulation of the GA19 -> GA20 step, the ma3Rma3R genotype may be viewed as being phase shifted in the rhythmic levels of GA20 and GA1 rather than as simply overproducing them.

PreviousNext
Back to top

Table of Contents

Download PDF
Email Article

Thank you for your interest in spreading the word on Plant Physiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Genetic Regulation of Development in Sorghum bicolor (IX. The ma3R Allele Disrupts Diurnal Control of Gibberellin Biosynthesis)
(Your Name) has sent you a message from Plant Physiology
(Your Name) thought you would like to see the Plant Physiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Genetic Regulation of Development in Sorghum bicolor (IX. The ma3R Allele Disrupts Diurnal Control of Gibberellin Biosynthesis)
K. R. Foster, P. W. Morgan
Plant Physiology May 1995, 108 (1) 337-343; DOI: 10.1104/pp.108.1.337

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Genetic Regulation of Development in Sorghum bicolor (IX. The ma3R Allele Disrupts Diurnal Control of Gibberellin Biosynthesis)
K. R. Foster, P. W. Morgan
Plant Physiology May 1995, 108 (1) 337-343; DOI: 10.1104/pp.108.1.337
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF

In this issue

Plant Physiology
Vol. 108, Issue 1
May 1995
  • Table of Contents
  • Index by author

More in this TOC Section

  • The rms1 Mutant of Pea Has Elevated Indole-3-Acetic Acid Levels and Reduced Root-Sap Zeatin Riboside Content but Increased Branching Controlled by Graft-Transmissible Signal(s)
  • Bacterial Cellulose-Binding Domain Modulates in Vitro Elongation of Different Plant Cells
  • Gibberellin Dose-Response Regulation of GA4 Gene Transcript Levels in Arabidopsis
Show more DEVELOPMENT AND GROWTH REGULATION

Similar Articles

Our Content

  • Home
  • Current Issue
  • Plant Physiology Preview
  • Archive
  • Focus Collections
  • Classic Collections
  • The Plant Cell
  • Plant Direct
  • Plantae
  • ASPB

For Authors

  • Instructions
  • Submit a Manuscript
  • Editorial Board and Staff
  • Policies
  • Recognizing our Authors

For Reviewers

  • Instructions
  • Journal Miles
  • Policies

Other Services

  • Permissions
  • Librarian resources
  • Advertise in our journals
  • Alerts
  • RSS Feeds

Copyright © 2021 by The American Society of Plant Biologists

Powered by HighWire