Skip to main content

Main menu

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae

User menu

  • My alerts
  • Log in
  • Log out

Search

  • Advanced search
Plant Physiology
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae
  • My alerts
  • Log in
  • Log out
Plant Physiology

Advanced Search

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Follow plantphysiol on Twitter
  • Visit plantphysiol on Facebook
  • Visit Plantae
OtherUPDATE
You have accessRestricted Access

Plant Protein Kinase Families and Signal Transduction

J. M. Stone, J. C. Walker
J. M. Stone
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J. C. Walker
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site

Published June 1995. DOI: https://doi.org/10.1104/pp.108.2.451

  • Article
  • Info & Metrics
  • PDF
Loading
  • Copyright © 1995 by American Society of Plant Biologists

Abstract

Enzymes of the eukaryotic protein kinase superfamily catalyze the reversible transfer of the [gamma]-phosphate from ATP to amino acid side chains of proteins. Protein kinase function can be counteracted by the action of phosphoprotein phosphatases. Phosphorylation status of a protein can have profound effects on its activity and interaction with other proteins. An estimated 1 to 3% of functional eukaryotic genes encode protein kinases, suggesting that they are involved in many aspects of cellular regulation and metabolism. In plants, protein phosphorylation has been implicated in responses to many signals, including light, pathogen invasion, hormones, temperature stress, and nutrient deprivation. Activities of several plant metabolic and regulatory enzymes are also controlled by reversible phosphorylation. As might be expected from this diversity of function, there is a large array of different protein kinases. Purification of protein kinases and their subsequent cloning, facilitated by the PCR and advances in homology-based cloning techniques, as well as functional analyses, including complementation of conditional yeast mutants and positional cloning of mutant plant genes, has already led to identification of more than 70 plant protein kinase genes. However, the precise functional roles of specific protein kinases and phosphatases during plant growth and development have been elucidated for only a few.

PreviousNext
Back to top

Table of Contents

Download PDF
Email Article

Thank you for your interest in spreading the word on Plant Physiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Plant Protein Kinase Families and Signal Transduction
(Your Name) has sent you a message from Plant Physiology
(Your Name) thought you would like to see the Plant Physiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Plant Protein Kinase Families and Signal Transduction
J. M. Stone, J. C. Walker
Plant Physiology Jun 1995, 108 (2) 451-457; DOI: 10.1104/pp.108.2.451

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Plant Protein Kinase Families and Signal Transduction
J. M. Stone, J. C. Walker
Plant Physiology Jun 1995, 108 (2) 451-457; DOI: 10.1104/pp.108.2.451
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF

In this issue

Plant Physiology
Vol. 108, Issue 2
Jun 1995
  • Table of Contents
  • Index by author

More in this TOC Section

  • Proanthocyanidin Biosynthesis—a Matter of Protection
  • What’s behind Purple Tomatoes? Insight into the Mechanisms of Anthocyanin Synthesis in Tomato Fruits
  • Developmental Plasticity at High Temperature
Show more UPDATE

Similar Articles

Our Content

  • Home
  • Current Issue
  • Plant Physiology Preview
  • Archive
  • Focus Collections
  • Classic Collections
  • The Plant Cell
  • Plant Direct
  • Plantae
  • ASPB

For Authors

  • Instructions
  • Submit a Manuscript
  • Editorial Board and Staff
  • Policies
  • Recognizing our Authors

For Reviewers

  • Instructions
  • Journal Miles
  • Policies

Other Services

  • Permissions
  • Librarian resources
  • Advertise in our journals
  • Alerts
  • RSS Feeds

Copyright © 2021 by The American Society of Plant Biologists

Powered by HighWire