Skip to main content

Main menu

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae

User menu

  • My alerts
  • Log in
  • Log out

Search

  • Advanced search
Plant Physiology
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae
  • My alerts
  • Log in
  • Log out
Plant Physiology

Advanced Search

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Follow plantphysiol on Twitter
  • Visit plantphysiol on Facebook
  • Visit Plantae
OtherCELL BIOLOGY AND SIGNAL TRANSDUCTION
You have accessRestricted Access

Evidence for a Mechanically Induced Oxidative Burst

T. Yahraus, S. Chandra, L. Legendre, P. S. Low
T. Yahraus
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S. Chandra
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
L. Legendre
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P. S. Low
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site

Published December 1995. DOI: https://doi.org/10.1104/pp.109.4.1259

  • Article
  • Info & Metrics
  • PDF
Loading
  • Copyright ©1995 by American Society of Plant Biologists

Abstract

Rapid release of H2O2 may constitute an initial defense response mounted by a plant. Inauguration of this oxidative burst is known to occur upon stimulation with chemical elicitors, but the possibility of mechanical elicitation arising from pathogen penetration/weakening of the cell wall has never been examined. To introduce an adjustable mechanical stress on the plasma membrane, cultured soybean (Glycine max Merr. cv Kent) cells were subjected to defined changes in medium osmolarity. Dilution of the medium with water or resuspension of cells in sucrose solutions of reduced osmolarity yielded an oxidative burst similar to those stimulated by chemical elicitors. Furthermore, the magnitude of oxidant biosynthesis and osmotic stress correlated directly. Upon return of the cells to normal tonicity, the oxidative burst abruptly halted, indicating that its expression depended on maintenance of the osmotic stress and not on any external chemical signal. To confirm the ability of soybean cells to respond to a mechanical stimulus with induction of an oxidative burst, cells were subjected to direct physical pressure. Application of pressure yielded a characteristic oxidative burst. Because neither these cells nor those subjected to osmotic pressure were damaged by their treatments, we conclude that plant cells can detect mechanical disturbances and initiate a classical defense reaction in response.

PreviousNext
Back to top

Table of Contents

Download PDF
Email Article

Thank you for your interest in spreading the word on Plant Physiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Evidence for a Mechanically Induced Oxidative Burst
(Your Name) has sent you a message from Plant Physiology
(Your Name) thought you would like to see the Plant Physiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Evidence for a Mechanically Induced Oxidative Burst
T. Yahraus, S. Chandra, L. Legendre, P. S. Low
Plant Physiology Dec 1995, 109 (4) 1259-1266; DOI: 10.1104/pp.109.4.1259

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Evidence for a Mechanically Induced Oxidative Burst
T. Yahraus, S. Chandra, L. Legendre, P. S. Low
Plant Physiology Dec 1995, 109 (4) 1259-1266; DOI: 10.1104/pp.109.4.1259
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF

In this issue

Plant Physiology
Vol. 109, Issue 4
Dec 1995
  • Table of Contents
  • Index by author

More in this TOC Section

  • The Cell Wall of the Arabidopsis Pollen Tube—Spatial Distribution, Recycling, and Network Formation of Polysaccharides
  • Systems Dynamic Modeling of a Guard Cell Cl− Channel Mutant Uncovers an Emergent Homeostatic Network Regulating Stomatal Transpiration
  • Architecture-Based Multiscale Computational Modeling of Plant Cell Wall Mechanics to Examine the Hydrogen-Bonding Hypothesis of the Cell Wall Network Structure Model
Show more CELL BIOLOGY AND SIGNAL TRANSDUCTION

Similar Articles

Our Content

  • Home
  • Current Issue
  • Plant Physiology Preview
  • Archive
  • Focus Collections
  • Classic Collections
  • The Plant Cell
  • Plant Direct
  • Plantae
  • ASPB

For Authors

  • Instructions
  • Submit a Manuscript
  • Editorial Board and Staff
  • Policies
  • Recognizing our Authors

For Reviewers

  • Instructions
  • Journal Miles
  • Policies

Other Services

  • Permissions
  • Librarian resources
  • Advertise in our journals
  • Alerts
  • RSS Feeds

Copyright © 2021 by The American Society of Plant Biologists

Powered by HighWire