Skip to main content

Main menu

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae

User menu

  • My alerts
  • Log in
  • Log out

Search

  • Advanced search
Plant Physiology
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae
  • My alerts
  • Log in
  • Log out
Plant Physiology

Advanced Search

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Follow plantphysiol on Twitter
  • Visit plantphysiol on Facebook
  • Visit Plantae
OtherPLANT-MICROBE AND PLANT-INSECT INTERACTIONS
You have accessRestricted Access

Competence for Elicitation of H2O2 in Hypocotyls of Cucumber Is Induced by Breaching the Cuticle and Is Enhanced by Salicylic Acid

M. Fauth, A. Merten, M. G. Hahn, W. Jeblick, H. Kauss
M. Fauth
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A. Merten
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M. G. Hahn
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
W. Jeblick
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
H. Kauss
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site

Published February 1996. DOI: https://doi.org/10.1104/pp.110.2.347

  • Article
  • Info & Metrics
  • PDF
Loading
  • Copyright © 1995 by American Society of Plant Biologists

Abstract

To study H2O2 production, the epidermal surfaces of hypocotyl segments from etiolated seedlings of cucumber (Cucumis sativus L.) were gently abraded. Freshly abraded segments were not constitutively competent for rapid H2O2 elicitation. This capacity developed subsequent to abrasion in a time-dependent process that was greatly enhanced in segments exhibiting an acquired resistance to penetration of their epidermal cell walls by Colletotrichum lagenarium, because of root pretreatment of the respective seedlings with 2,6-dichloroisonicotinic acid. When this compound or salicylic acid was applied to abraded segments, it also greatly enhanced the induction of competence for H2O2 elicitation. This process was fully inhibited by 5 [mu]M cycloheximide or 200 [mu]M puromycin, suggesting a requirement for translational protein synthesis. Both a crude elicitor preparation and a partially purified oligoglucan mixture from Phytophthora sojae also induced, in addition to H2O2 production, a refractory state, which explains the transient nature of H2O2 elicitation. Taken together, these results suggest that the cucumber hypocotyl epidermis becomes conditioned for competence to produce H2O2 in response to elicitors by a stimulus resulting from breaching the cuticle and/or cutting segments. This conditioning process is associated with protein synthesis and is greatly enhanced when substances able to induce systemic acquired resistance are present in the tissue.

PreviousNext
Back to top

Table of Contents

Download PDF
Email Article

Thank you for your interest in spreading the word on Plant Physiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Competence for Elicitation of H2O2 in Hypocotyls of Cucumber Is Induced by Breaching the Cuticle and Is Enhanced by Salicylic Acid
(Your Name) has sent you a message from Plant Physiology
(Your Name) thought you would like to see the Plant Physiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Competence for Elicitation of H2O2 in Hypocotyls of Cucumber Is Induced by Breaching the Cuticle and Is Enhanced by Salicylic Acid
M. Fauth, A. Merten, M. G. Hahn, W. Jeblick, H. Kauss
Plant Physiology Feb 1996, 110 (2) 347-354; DOI: 10.1104/pp.110.2.347

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Competence for Elicitation of H2O2 in Hypocotyls of Cucumber Is Induced by Breaching the Cuticle and Is Enhanced by Salicylic Acid
M. Fauth, A. Merten, M. G. Hahn, W. Jeblick, H. Kauss
Plant Physiology Feb 1996, 110 (2) 347-354; DOI: 10.1104/pp.110.2.347
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF

In this issue

Plant Physiology
Vol. 110, Issue 2
Feb 1996
  • Table of Contents
  • Index by author

More in this TOC Section

  • Purification, Characterization, and Molecular Cloning of the Gene of a Seed-Specific Antimicrobial Protein from Pokeweed
  • Salicylic Acid Mediated by the Oxidative Burst Is a Key Molecule in Local and Systemic Responses of Cotton Challenged by an Avirulent Race of Xanthomonas campestris pvmalvacearum
  • Expression and Localization of Nitrilase during Symptom Development of the Clubroot Disease in Arabidopsis
Show more PLANT-MICROBE AND PLANT-INSECT INTERACTIONS

Similar Articles

Our Content

  • Home
  • Current Issue
  • Plant Physiology Preview
  • Archive
  • Focus Collections
  • Classic Collections
  • The Plant Cell
  • Plant Direct
  • Plantae
  • ASPB

For Authors

  • Instructions
  • Submit a Manuscript
  • Editorial Board and Staff
  • Policies
  • Recognizing our Authors

For Reviewers

  • Instructions
  • Journal Miles
  • Policies

Other Services

  • Permissions
  • Librarian resources
  • Advertise in our journals
  • Alerts
  • RSS Feeds

Copyright © 2021 by The American Society of Plant Biologists

Powered by HighWire