Skip to main content

Main menu

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae

User menu

  • My alerts
  • Log in
  • Log out

Search

  • Advanced search
Plant Physiology
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae
  • My alerts
  • Log in
  • Log out
Plant Physiology

Advanced Search

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Follow plantphysiol on Twitter
  • Visit plantphysiol on Facebook
  • Visit Plantae
OtherDEVELOPMENT AND GROWTH REGULATION
You have accessRestricted Access

Genetic Dissection of the Relative Roles of Auxin and Gibberellin in the Regulation of Stem Elongation in Intact Light-Grown Peas

T. Yang, P. J. Davies, J. B. Reid
T. Yang
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P. J. Davies
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J. B. Reid
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site

Published March 1996. DOI: https://doi.org/10.1104/pp.110.3.1029

  • Article
  • Info & Metrics
  • PDF
Loading
  • Copyright © 1996 by American Society of Plant Biologists

Abstract

Exogenous gibberellin (GA) and auxin (indoleacetic acid [IAA]) strongly stimulated stem elongation in dwarf GA1-deficient le mutants of light-grown pea (Pisum sativum L.): IAA elicited a sharp increase in growth rate after 20 min followed by a slow decline; the GA response had a longer lag (3 h) and growth increased gradually with time. These responses were additive. The effect of GA was mainly in internodes less than 25% expanded, whereas that of IAA was in the older, elongating internodes. IAA stimulated growth by cell extension; GA stimulated growth by an increase in cell length and cell number. Dwarf lkb GA-response-mutant plants elongated poorly in response to GA (accounted for by an increase in cell number) but were very responsive to IAA. GA produced a substantial elongation in lkb plants only in the presence of IAA. Because lkb plants contain low levels of IAA, growth suppression in dwarf lkb mutants seems to be due to a deficiency in endogenous auxin. GA may enhance the auxin induction of cell elongation but cannot promote elongation in the absence of auxin. The effect of GA may, in part, be mediated by auxin. Auxin and GA control separate processes that together contribute to stem elongation. A deficiency in either leads to a dwarfed phenotype.

PreviousNext
Back to top

Table of Contents

Download PDF
Email Article

Thank you for your interest in spreading the word on Plant Physiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Genetic Dissection of the Relative Roles of Auxin and Gibberellin in the Regulation of Stem Elongation in Intact Light-Grown Peas
(Your Name) has sent you a message from Plant Physiology
(Your Name) thought you would like to see the Plant Physiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Genetic Dissection of the Relative Roles of Auxin and Gibberellin in the Regulation of Stem Elongation in Intact Light-Grown Peas
T. Yang, P. J. Davies, J. B. Reid
Plant Physiology Mar 1996, 110 (3) 1029-1034; DOI: 10.1104/pp.110.3.1029

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Genetic Dissection of the Relative Roles of Auxin and Gibberellin in the Regulation of Stem Elongation in Intact Light-Grown Peas
T. Yang, P. J. Davies, J. B. Reid
Plant Physiology Mar 1996, 110 (3) 1029-1034; DOI: 10.1104/pp.110.3.1029
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF

In this issue

Plant Physiology
Vol. 110, Issue 3
Mar 1996
  • Table of Contents
  • Index by author

More in this TOC Section

  • The rms1 Mutant of Pea Has Elevated Indole-3-Acetic Acid Levels and Reduced Root-Sap Zeatin Riboside Content but Increased Branching Controlled by Graft-Transmissible Signal(s)
  • Bacterial Cellulose-Binding Domain Modulates in Vitro Elongation of Different Plant Cells
  • Gibberellin Dose-Response Regulation of GA4 Gene Transcript Levels in Arabidopsis
Show more DEVELOPMENT AND GROWTH REGULATION

Similar Articles

Our Content

  • Home
  • Current Issue
  • Plant Physiology Preview
  • Archive
  • Focus Collections
  • Classic Collections
  • The Plant Cell
  • Plant Direct
  • Plantae
  • ASPB

For Authors

  • Instructions
  • Submit a Manuscript
  • Editorial Board and Staff
  • Policies
  • Recognizing our Authors

For Reviewers

  • Instructions
  • Journal Miles
  • Policies

Other Services

  • Permissions
  • Librarian resources
  • Advertise in our journals
  • Alerts
  • RSS Feeds

Copyright © 2021 by The American Society of Plant Biologists

Powered by HighWire