Skip to main content

Main menu

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae

User menu

  • My alerts
  • Log in

Search

  • Advanced search
Plant Physiology
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae
  • My alerts
  • Log in
Plant Physiology

Advanced Search

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Follow plantphysiol on Twitter
  • Visit plantphysiol on Facebook
  • Visit Plantae
OtherWHOLE PLANT, ENVIRONMENTAL, AND STRESS PHYSIOLOGY
You have accessRestricted Access

Cool-Temperature-Induced Chlorosis in Rice Plants (I. Relationship between the Induction and a Disturbance of Etioplast Development)

R. Yoshida, A. Kanno, T. Sato, T. Kameya
R. Yoshida
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A. Kanno
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
T. Sato
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
T. Kameya
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site

Published March 1996. DOI: https://doi.org/10.1104/pp.110.3.997

  • Article
  • Info & Metrics
  • PDF
Loading
  • Copyright © 1996 by American Society of Plant Biologists

Abstract

We have established an experimental system for mimicking the phenomenon of cool-temperature-induced chlorosis (CTIC) in rice plants (Oryza sativa L.). Rice seedlings were initially grown in darkness under cool-temperature conditions and then exposed to light and warm conditions to follow the expression of CTIC. Induction of CTIC in the sensitive cultivar (cv Surjamukhi) was bimodally dependent on the temperatures experienced during the initial growth in darkness. CTIC was maximally induced between 15 and 17[deg]C. A positive correlation was demonstrated between induction of CTIC and the growth activity of shoots during growth in darkness. Electrophoretic and immunoblot analysis revealed that accumulation of NADPH-protochlorophyllide oxidoreductase in plastids was also bimodally dependent on the temperatures during the growth in darkness with minimum accumulation between 15 and 17[deg]C, suggesting that the reduction of NADPH-protochlorophyllide oxidoreductase accumulation in plastids might be closely linked to a disturbance in transformations of plastids to etioplasts during the dark growth under the critical temperatures and thereby to the CTIC phenomenon. This was corroborated by electron microscopic observations. These results suggest that growth is one of the determining factors for the expression of CTIC phenotype in rice under cool temperature.

PreviousNext
Back to top

Table of Contents

Download PDF
Email Article

Thank you for your interest in spreading the word on Plant Physiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Cool-Temperature-Induced Chlorosis in Rice Plants (I. Relationship between the Induction and a Disturbance of Etioplast Development)
(Your Name) has sent you a message from Plant Physiology
(Your Name) thought you would like to see the Plant Physiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Cool-Temperature-Induced Chlorosis in Rice Plants (I. Relationship between the Induction and a Disturbance of Etioplast Development)
R. Yoshida, A. Kanno, T. Sato, T. Kameya
Plant Physiology Mar 1996, 110 (3) 997-1005; DOI: 10.1104/pp.110.3.997

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Cool-Temperature-Induced Chlorosis in Rice Plants (I. Relationship between the Induction and a Disturbance of Etioplast Development)
R. Yoshida, A. Kanno, T. Sato, T. Kameya
Plant Physiology Mar 1996, 110 (3) 997-1005; DOI: 10.1104/pp.110.3.997
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF

In this issue

Plant Physiology
Vol. 110, Issue 3
Mar 1996
  • Table of Contents
  • Index by author

More in this TOC Section

  • The Boron Requirement and Cell Wall Properties of Growing and Stationary Suspension-CulturedChenopodium album L. Cells
  • Visualization of Cavitated Vessels in Winter and Refilled Vessels in Spring in Diffuse-Porous Trees by Cryo-Scanning Electron Microscopy
  • Rate-Limiting Steps in Selenium Assimilation and Volatilization by Indian Mustard
Show more WHOLE PLANT, ENVIRONMENTAL, AND STRESS PHYSIOLOGY

Similar Articles

Our Content

  • Home
  • Current Issue
  • Plant Physiology Preview
  • Archive
  • Focus Collections
  • Classic Collections
  • The Plant Cell
  • Plant Direct
  • Plantae
  • ASPB

For Authors

  • Instructions
  • Submit a Manuscript
  • Editorial Board and Staff
  • Policies
  • Recognizing our Authors

For Reviewers

  • Instructions
  • Journal Miles
  • Policies

Other Services

  • Permissions
  • Librarian resources
  • Advertise in our journals
  • Alerts
  • RSS Feeds

Copyright © 2021 by The American Society of Plant Biologists

Powered by HighWire