Skip to main content

Main menu

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae

User menu

  • My alerts
  • Log in
  • Log out

Search

  • Advanced search
Plant Physiology
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae
  • My alerts
  • Log in
  • Log out
Plant Physiology

Advanced Search

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Follow plantphysiol on Twitter
  • Visit plantphysiol on Facebook
  • Visit Plantae
OtherDEVELOPMENT AND GROWTH REGULATION
You have accessRestricted Access

Highly Branched Phenotype of the Petunia dad1-1 Mutant Is Reversed by Grafting

C. Napoli
C. Napoli
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site

Published May 1996. DOI: https://doi.org/10.1104/pp.111.1.27

  • Article
  • Info & Metrics
  • PDF
Loading
  • Copyright © 1996 by American Society of Plant Biologists

Abstract

The recessive dad1–1 allele conditions a highly branched growth habit resulting from a proliferation of first- and second-order branches. Unlike the wild-type parent, which has lateral branching delayed until the third or fourth leaf node distal to the cotyledons, dad1–1 initiates lateral branching from each cotyledon axil. In addition to initiating lateral branching sooner than the wild type, dad1–1 sustains branching through more nodes on the main shoot axis than the wild type. In keeping with a propensity for branching at basal nodes, dad1–1 produces second-order branches at the proximal-most nodes on first-order branches and small shoots from accessory buds at basal nodes on the main shoot axis. Additional traits associated with the mutation are late flowering, adventitious root formation, shortened internodes, and mild leaf chlorosis. Graft studies show that a dad1–1 scion, when grafted onto wild-type stock, is converted to a phenotype resembling the wild type. Furthermore, a small wild-type interstock fragment inserted between a mutant root stock and a mutant scion is sufficient to convert the dad1–1 scion from mutant to a near wild-type appearance. The recessive dad1–1 phenotype combines traits associated with cytokinin overexpression, auxin overexpression, and gibberellin limitation, which suggests a complex interaction of hormones in establishing the mutant phenotype.

PreviousNext
Back to top

Table of Contents

Download PDF
Email Article

Thank you for your interest in spreading the word on Plant Physiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Highly Branched Phenotype of the Petunia dad1-1 Mutant Is Reversed by Grafting
(Your Name) has sent you a message from Plant Physiology
(Your Name) thought you would like to see the Plant Physiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Highly Branched Phenotype of the Petunia dad1-1 Mutant Is Reversed by Grafting
C. Napoli
Plant Physiology May 1996, 111 (1) 27-37; DOI: 10.1104/pp.111.1.27

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Highly Branched Phenotype of the Petunia dad1-1 Mutant Is Reversed by Grafting
C. Napoli
Plant Physiology May 1996, 111 (1) 27-37; DOI: 10.1104/pp.111.1.27
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF

In this issue

Plant Physiology
Vol. 111, Issue 1
May 1996
  • Table of Contents
  • Index by author

More in this TOC Section

  • The rms1 Mutant of Pea Has Elevated Indole-3-Acetic Acid Levels and Reduced Root-Sap Zeatin Riboside Content but Increased Branching Controlled by Graft-Transmissible Signal(s)
  • Bacterial Cellulose-Binding Domain Modulates in Vitro Elongation of Different Plant Cells
  • Gibberellin Dose-Response Regulation of GA4 Gene Transcript Levels in Arabidopsis
Show more DEVELOPMENT AND GROWTH REGULATION

Similar Articles

Our Content

  • Home
  • Current Issue
  • Plant Physiology Preview
  • Archive
  • Focus Collections
  • Classic Collections
  • The Plant Cell
  • Plant Direct
  • Plantae
  • ASPB

For Authors

  • Instructions
  • Submit a Manuscript
  • Editorial Board and Staff
  • Policies
  • Recognizing our Authors

For Reviewers

  • Instructions
  • Journal Miles
  • Policies

Other Services

  • Permissions
  • Librarian resources
  • Advertise in our journals
  • Alerts
  • RSS Feeds

Copyright © 2021 by The American Society of Plant Biologists

Powered by HighWire