Skip to main content

Main menu

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae

User menu

  • My alerts
  • Log in
  • Log out

Search

  • Advanced search
Plant Physiology
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae
  • My alerts
  • Log in
  • Log out
Plant Physiology

Advanced Search

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Follow plantphysiol on Twitter
  • Visit plantphysiol on Facebook
  • Visit Plantae
OtherCELL BIOLOGY AND SIGNAL TRANSDUCTION
You have accessRestricted Access

Central Roles for Potassium and Sucrose in Guard-Cell Osmoregulation

L. D. Talbott, E. Zeiger
L. D. Talbott
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
E. Zeiger
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site

Published August 1996. DOI: https://doi.org/10.1104/pp.111.4.1051

  • Article
  • Info & Metrics
  • PDF
Loading
  • Copyright © 1996 by American Society of Plant Biologists

Abstract

Osmoregulation in guard cells of intact, attached Vicia faba leaves grown under growth chamber and greenhouse conditions was studied over a daily light cycle of stomatal movements. Under both growth conditions guard cells had two distinct osmoregulatory phases. In the first (morning) phase, opening was correlated with K+ uptake and, to a lesser extent, sucrose accumulation. In the second (afternoon) phase, in which apertures were maximal, K+ content declined and sucrose became the dominant osmoticum. Reopening of the stomata after a CO2-induced closure was accompanied by accumulation of either K+ or sucrose, depending on the time of day, indicating that a single environmental signal may use multiple osmoregulatory pathways. Malate accumulation, correlated with K+ uptake, was detected under growth chamber but not greenhouse conditions, whereas Cl- was the main K+ counterion in the greenhouse. These results indicate that guard-cell osmoregulation in the intact leaf depends on at least two different osmoregulatory pathways, K+ transport and sucrose metabolism. Furthermore, the relative importance of the K+ counterions malate and Cl- appears to be environment-dependent.

PreviousNext
Back to top

Table of Contents

Download PDF
Email Article

Thank you for your interest in spreading the word on Plant Physiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Central Roles for Potassium and Sucrose in Guard-Cell Osmoregulation
(Your Name) has sent you a message from Plant Physiology
(Your Name) thought you would like to see the Plant Physiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Central Roles for Potassium and Sucrose in Guard-Cell Osmoregulation
L. D. Talbott, E. Zeiger
Plant Physiology Aug 1996, 111 (4) 1051-1057; DOI: 10.1104/pp.111.4.1051

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Central Roles for Potassium and Sucrose in Guard-Cell Osmoregulation
L. D. Talbott, E. Zeiger
Plant Physiology Aug 1996, 111 (4) 1051-1057; DOI: 10.1104/pp.111.4.1051
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF

In this issue

Plant Physiology
Vol. 111, Issue 4
Aug 1996
  • Table of Contents
  • Index by author

More in this TOC Section

  • The Cell Wall of the Arabidopsis Pollen Tube—Spatial Distribution, Recycling, and Network Formation of Polysaccharides
  • Systems Dynamic Modeling of a Guard Cell Cl− Channel Mutant Uncovers an Emergent Homeostatic Network Regulating Stomatal Transpiration
  • Architecture-Based Multiscale Computational Modeling of Plant Cell Wall Mechanics to Examine the Hydrogen-Bonding Hypothesis of the Cell Wall Network Structure Model
Show more CELL BIOLOGY AND SIGNAL TRANSDUCTION

Similar Articles

Our Content

  • Home
  • Current Issue
  • Plant Physiology Preview
  • Archive
  • Focus Collections
  • Classic Collections
  • The Plant Cell
  • Plant Direct
  • Plantae
  • ASPB

For Authors

  • Instructions
  • Submit a Manuscript
  • Editorial Board and Staff
  • Policies
  • Recognizing our Authors

For Reviewers

  • Instructions
  • Journal Miles
  • Policies

Other Services

  • Permissions
  • Librarian resources
  • Advertise in our journals
  • Alerts
  • RSS Feeds

Copyright © 2021 by The American Society of Plant Biologists

Powered by HighWire