Skip to main content

Main menu

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae

User menu

  • My alerts
  • Log in

Search

  • Advanced search
Plant Physiology
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae
  • My alerts
  • Log in
Plant Physiology

Advanced Search

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Follow plantphysiol on Twitter
  • Visit plantphysiol on Facebook
  • Visit Plantae
OtherWHOLE PLANT, ENVIRONMENTAL, AND STRESS PHYSIOLOGY
You have accessRestricted Access

Photosynthetic Gas Exchange and Discrimination against 13CO2 and C18O16O in Tobacco Plants Modified by an Antisense Construct to Have Low Chloroplastic Carbonic Anhydrase

T. G. Williams, L. B. Flanagan, J. R. Coleman
T. G. Williams
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
L. B. Flanagan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J. R. Coleman
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site

Published September 1996. DOI: https://doi.org/10.1104/pp.112.1.319

  • Article
  • Info & Metrics
  • PDF
Loading

Statistics from Altmetric.com

Article usage

Article usage: June 2002 to January 2021

AbstractFullPdf
Jun 2002104
Jul 2002002
Aug 2002203
Sep 2002105
Oct 2002305
Nov 2002103
Jan 2003102
Feb 2003101
Mar 2003305
Apr 2003504
May 2003114
Jun 2003102
Jul 2003102
Aug 2003300
Sep 2003504
Oct 2003505
Nov 20031206
Dec 20031003
Jan 2004601
Feb 20049015
Mar 2004903
Apr 2004302
May 2004203
Jun 20041006
Jul 20041303
Aug 2004704
Sep 20041101
Oct 2004407
Nov 2004602
Dec 2004504
Jan 2005508
Feb 2005304
Mar 2005201
Apr 2005601
May 2005603
Jun 2005201
Jul 2005502
Aug 2005311
Sep 20051301
Oct 20051507
Nov 20051604
Dec 2005601
Jan 20061301
Feb 2006807
Mar 2006003
Apr 2006604
May 2006100
Jun 2006201
Jul 2006100
Aug 2006002
Sep 2006504
Oct 2006204
Nov 2006304
Dec 2006003
Jan 2007101
Feb 2007103
Mar 2007102
Apr 20073011
May 2007003
Jun 2007001
Jul 2007103
Aug 2007001
Sep 2007200
Oct 2007100
Nov 2007102
Dec 2007001
Jan 2008203
Feb 2008002
Mar 2008407
Apr 2008509
May 2008804
Jun 20081203
Jul 2008503
Aug 2008003
Sep 2008303
Oct 2008601
Nov 20081405
Dec 20081304
Jan 2009903
Feb 2009505
Mar 20091001
Apr 2009103
May 2009301
Jun 2009405
Jul 2009102
Aug 2009103
Sep 2009301
Oct 2009406
Nov 2009103
Dec 2009600
Jan 2010406
Feb 2010204
Mar 2010308
Apr 2010304
May 20105019
Jun 2010306
Jul 2010308
Aug 2010307
Sep 20104013
Oct 2010207
Nov 20108013
Dec 2010503
Jan 2011201
Feb 2011203
Mar 2011504
Apr 2011905
May 2011604
Jun 2011202
Jul 20118010
Aug 2011600
Sep 20111008
Oct 2011804
Nov 2011305
Dec 2011504
Jan 2012605
Feb 2012002
Mar 2012501
Apr 2012802
May 20126021
Jun 20121108
Jul 2012405
Aug 2012805
Sep 2012807
Oct 2012407
Nov 2012707
Dec 2012304
Jan 20131609
Feb 2013706
Mar 2013509
Apr 2013906
May 20138012
Jun 2013309
Jul 2013304
Aug 2013307
Sep 2013703
Oct 2013609
Nov 2013602
Dec 20135010
Jan 2014802
Feb 2014506
Mar 2014503
Apr 2014409
May 2014709
Jun 2014304
Jul 2014801
Aug 2014202
Sep 2014102
Oct 2014107
Nov 20143015
Dec 2014202
Jan 2015504
Feb 2015206
Mar 2015307
Apr 2015908
May 2015201
Jun 2015602
Jul 2015003
Aug 2015802
Sep 20151703
Oct 2015217
Nov 2015600
Dec 2015701
Jan 2016802
Feb 20164020
Mar 201615013
Apr 2016206
May 2016704
Jun 20161107
Jul 2016003
Aug 2016505
Sep 2016305
Oct 2016400
Nov 2016707
Dec 2016408
Jan 2017302
Feb 2017602
Mar 2017603
Apr 2017601
May 2017700
Jun 20171904
Jul 201712011
Aug 20171904
Sep 2017502
Oct 2017101
Nov 2017902
Dec 2017102
Jan 2018600
Feb 2018501
Mar 20188010
Apr 20181404
May 20181105
Jun 2018803
Jul 20182803
Aug 2018905
Sep 2018906
Oct 20181005
Nov 20181507
Dec 20181909
Jan 2019605
Feb 20191304
Mar 2019306
Apr 20191408
May 20196012
Jun 20191005
Jul 20191202
Aug 201922011
Sep 20191405
Oct 20192708
Nov 2019504
Dec 2019906
Jan 20201005
Feb 2020704
Mar 2020203
Apr 2020902
May 2020604
Jun 2020607
Jul 2020603
Aug 2020806
Sep 20201408
Oct 20202706
Nov 20201802
Dec 202014012
Jan 2021801

Author Information

  1. T. G. Williams,
  2. L. B. Flanagan and
  3. J. R. Coleman
  1. Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada (T.G.W., L.B.F.)

Cited By...

  • 68 Citations
  • 58 Citations
  • Google Scholar

This article has been cited by the following articles in journals that are participating in Crossref Cited-by Linking.

  • Mesophyll conductance to CO2: current knowledge and future prospects
    JAUME FLEXAS, MIQUEL RIBAS-CARBÓ, ANTONIO DIAZ-ESPEJO, JERONI GALMÉS, HIPÓLITO MEDRANO
    Plant, Cell & Environment 2008 31 5
  • Mesophyll diffusion conductance to CO2: An unappreciated central player in photosynthesis
    Jaume Flexas, Margaret M. Barbour, Oliver Brendel, Hernán M. Cabrera, Marc Carriquí, Antonio Díaz-Espejo, Cyril Douthe, Erwin Dreyer, Juan P. Ferrio, Jorge Gago, Alexander Gallé, Jeroni Galmés, Naomi Kodama, Hipólito Medrano, Ülo Niinemets, José J. Peguero-Pina, Alicia Pou, Miquel Ribas-Carbó, Magdalena Tomás, Tiina Tosens, Charles R. Warren
    Plant Science 2012 193-194
  • Resistances along the CO2 diffusion pathway inside leaves
    J. R. Evans, R. Kaldenhoff, B. Genty, I. Terashima
    Journal of Experimental Botany 2009 60 8
  • Tobacco aquaporin NtAQP1 is involved in mesophyll conductance to CO2in vivo
    Jaume Flexas, Miquel Ribas-Carbó, David T. Hanson, Josefina Bota, Beate Otto, Josep Cifre, Nate McDowell, Hipólito Medrano, Ralf Kaldenhoff
    The Plant Journal 2006 48 3
  • The tobacco salicylic acid-binding protein 3 (SABP3) is the chloroplast carbonic anhydrase, which exhibits antioxidant activity and plays a role in the hypersensitive defense response
    D. H. Slaymaker, D. A. Navarre, D. Clark, O. del Pozo, G. B. Martin, D. F. Klessig
    Proceedings of the National Academy of Sciences 2002 99 18
  • Diffusional conductances to CO2 as a target for increasing photosynthesis and photosynthetic water-use efficiency
    Jaume Flexas, Ülo Niinemets, Alexander Gallé, Margaret M. Barbour, Mauro Centritto, Antonio Diaz-Espejo, Cyril Douthe, Jeroni Galmés, Miquel Ribas-Carbo, Pedro L. Rodriguez, Francesc Rosselló, Raju Soolanayakanahally, Magdalena Tomas, Ian J. Wright, Graham D. Farquhar, Hipólito Medrano
    Photosynthesis Research 2013 117 1-3
  • Photosynthesis
    Enrico Brugnoli, Graham D. Farquhar
    2000 9
  • Effects of low atmospheric CO2 on plants: more than a thing of the past
    Rowan F Sage, John R Coleman
    Trends in Plant Science 2001 6 1
  • Photosynthesis
    John R Evans, Francesco Loreto
    2000 9
  • Influence of leaf dry mass per area, CO2, and irradiance on mesophyll conductance in sclerophylls
    Foteini Hassiotou, Martha Ludwig, Michael Renton, Erik J. Veneklaas, John R. Evans
    Journal of Experimental Botany 2009 60 8
  • Regulation of photosynthesis and stomatal and mesophyll conductance under water stress and recovery in olive trees: correlation with gene expression of carbonic anhydrase and aquaporins
    Alfonso Perez-Martin, Chiara Michelazzo, Jose M. Torres-Ruiz, Jaume Flexas, José E. Fernández, Luca Sebastiani, Antonio Diaz-Espejo
    Journal of Experimental Botany 2014 65 12
  • Anatomical basis of variation in mesophyll resistance in eastern Australian sclerophylls: news of a long and winding path
    Tiina Tosens, Ülo Niinemets, Mark Westoby, Ian J. Wright
    Journal of Experimental Botany 2012 63 14
  • CO2 transfer conductance, leaf structure and carbon isotope composition of Polygonum cuspidatum leaves from low and high altitudes
    H. Kogami, Y. T. Hanba, T. Kibe, I. Terashima, T. Masuzawa
    Plant, Cell & Environment 2001 24 5
  • Mesophyll conductance to CO2 and Rubisco as targets for improving intrinsic water use efficiency in C3 plants
    J. Flexas, A. Díaz-Espejo, M. A. Conesa, R. E. Coopman, C. Douthe, J. Gago, A. Gallé, J. Galmés, H. Medrano, M. Ribas-Carbo, M. Tomàs, Ü. Niinemets
    Plant, Cell & Environment 2016 39 5
  • A mechanistic model of H218O and C18OO fluxes between ecosystems and the atmosphere: Model description and sensitivity analyses
    W. J. Riley, C. J. Still, M. S. Torn, J. A. Berry
    Global Biogeochemical Cycles 2002 16 4
  • Diurnal variation of Δ13CO2, ΔC18O16O and evaporative site enrichment of δH218O in Piper aduncum under field conditions in Trinidad
    K. G. Harwood, J. S. Gillon, H. Griffiths, M. S. J. Broadmeadow
    Plant, Cell and Environment 1998 21 3
  • Non‐climatic variations in the oxygen isotopic compositions of plants
    XUE‐FENG. WANG, DAN. YAKIR, MICHAEL AVISHAI
    Global Change Biology 1998 4 8
  • Discrimination against C18O16O during photosynthesis and the oxygen isotope ratio of respired CO2in boreal forest ecosystems
    Lawrence B. Flanagan, J. Renee Brooks, Gregory T. Varney, James R. Ehleringer
    Global Biogeochemical Cycles 1997 11 1
  • Dynamics of isotopic exchange of carbon dioxide in a Tennessee deciduous forest
    David R. Bowling, Dennis D. Baldocchi, Russell K. Monson
    Global Biogeochemical Cycles 1999 13 4
  • Speedy small stomata?
    J. A. Raven
    Journal of Experimental Botany 2014 65 6
  • The Biosynthetic Capacities of the Plastids and Integration Between Cytoplasmic and Chloroplast Processes
    Norbert Rolland, Gilles Curien, Giovanni Finazzi, Marcel Kuntz, Eric Maréchal, Michel Matringe, Stéphane Ravanel, Daphné Seigneurin-Berny
    Annual Review of Genetics 2012 46 1
  • Naturally low carbonic anhydrase activity in C 4 and C 3 plants limits discrimination against C 18 OO during photosynthesis
    J. S. Gillon, D. Yakir
    Plant, Cell & Environment 2000 23 9
  • Genetic improvement of leaf photosynthesis and intrinsic water use efficiency in C3 plants: Why so much little success?
    J. Flexas
    Plant Science 2016 251
  • Influence of soils on oxygen isotope ratio of atmospheric CO2
    Libby A. Stern, Ronald Amundson, W. Troy Baisden
    Global Biogeochemical Cycles 2001 15 3
  • Carbonic anhydrase and C4 photosynthesis: a transgenic analysis
    S. VON CAEMMERER, V. QUINN, N. C. HANCOCK, G. D. PRICE, R. T. FURBANK, M. LUDWIG
    Plant, Cell and Environment 2004 27 6
  • Carbonic Anhydrase, Photosynthesis, and Seed Yield in Mustard Plants Treated with Phytohormones
    S. Hayat, A. Ahmad, M. Mobin, Q. Fariduddin, Z.M. Azam
    Photosynthetica 2001 39 1
  • Photosynthesis in Algae
    John A Raven, John Beardall
    2003 14
  • Temperature response of mesophyll conductance in three C4species calculated with two methods:18O discrimination andin vitro Vpmax
    Nerea Ubierna, Anthony Gandin, Ryan A. Boyd, Asaph B. Cousins
    New Phytologist 2017 214 1
  • Three-dimensional microscale modelling of CO2transport and light propagation in tomato leaves enlightens photosynthesis
    Quang Tri Ho, Herman N. C. Berghuijs, Rodrigo Watté, Pieter Verboven, Els Herremans, Xinyou Yin, Moges A. Retta, Ben Aernouts, Wouter Saeys, Lukas Helfen, Graham D. Farquhar, Paul C. Struik, Bart M. Nicolaï
    Plant, Cell & Environment 2016 39 1
  • Carbonic anhydrase and the molecular evolution of C4 photosynthesis
    MARTHA LUDWIG
    Plant, Cell & Environment 2012 35 1
  • Substantial role for carbonic anhydrase in latitudinal variation in mesophyll conductance of Populus trichocarpa Torr. & Gray
    Mina Momayyezi, Robert D. Guy
    Plant, Cell & Environment 2017 40 1
  • The molecular evolution of  -carbonic anhydrase in Flaveria
    M. Ludwig
    Journal of Experimental Botany 2011 62 9
  • Effects of reduced carbonic anhydrase activity on CO2assimilation rates inSetaria viridis: a transgenic analysis
    Hannah L. Osborn, Hugo Alonso-Cantabrana, Robert E. Sharwood, Sarah Covshoff, John R. Evans, Robert T. Furbank, Susanne von Caemmerer
    Journal of Experimental Botany 2017 68 2
  • Photosynthesis Optimized across Land Plant Phylogeny
    Jorge Gago, Marc Carriquí, Miquel Nadal, María José Clemente-Moreno, Rafael Eduardo Coopman, Alisdair Robert Fernie, Jaume Flexas
    Trends in Plant Science 2019 24 10
  • Estimation of canopy average mesophyll conductance using δ13C of phloem contents
    NEREA UBIERNA, JOHN D. MARSHALL
    Plant, Cell & Environment 2011 34 9
  • Photosynthetic characterization of Rubisco transplantomic lines reveals alterations on photochemistry and mesophyll conductance
    Jeroni Galmés, Juan Alejandro Perdomo, Jaume Flexas, Spencer M. Whitney
    Photosynthesis Research 2013 115 2-3
  • Potyviral Gene-Silencing Suppressor HCPro Interacts with Salicylic Acid (SA)-Binding Protein 3 to Weaken SA-Mediated Defense Responses
    Sylvain Poque, Hui-Wen Wu, Chung-Hao Huang, Hao-Wen Cheng, Wen-Chi Hu, Jun-Yi Yang, David Wang, Shyi-Dong Yeh
    Molecular Plant-Microbe Interactions® 2018 31 1
  • Modelling the relationship between CO2 assimilation and leaf anatomical properties in tomato leaves
    Herman N.C. Berghuijs, Xinyou Yin, Q. Tri Ho, Peter E.L. van der Putten, Pieter Verboven, Moges A. Retta, Bart M. Nicolaï, Paul C. Struik
    Plant Science 2015 238
  • Photosynthesis
    John R. Coleman
    2000 9
  • Diversity in forms and functions of carbonic anhydrase in terrestrial higher plants
    B. N. Ivanov, L. K. Ignatova, A. K. Romanova
    Russian Journal of Plant Physiology 2007 54 2
  • Evolution of carbonic anhydrase in C4 plants
    Martha Ludwig
    Current Opinion in Plant Biology 2016 31
  • CO<sub>2</sub> sequestration in plants: lesson from divergent strategies
    S. K. Vats, S. Kumar, P. S. Ahuja
    Photosynthetica 2011 49 4
  • The multifunctional face of plant carbonic anhydrase
    Jolanta Floryszak-Wieczorek, Magdalena Arasimowicz-Jelonek
    Plant Physiology and Biochemistry 2017 112
  • Water Scarcity and Sustainable Agriculture in Semiarid Environment
    Miquel Nadal, Jaume Flexas
    2018
  • Comparison of photosynthetic activity of Orychophragmus violaceus and oil-seed rape
    Y. Y. Wu, X. M. Wu, P. P. Li, Y. G. Zhao, X. T. Li, X. Z. Zhao
    Photosynthetica 2005 43 2
  • Emerging roles for carbonic anhydrase in mesophyll conductance and photosynthesis
    Mina Momayyezi, Athena D. McKown, Shannon C. S. Bell, Robert D. Guy
    The Plant Journal 2020 101 4
  • The Carbonic Anhydrases
    Jim N. Burnell
    2000
  • The Leaf: A Platform for Performing Photosynthesis
    Jaume Flexas, Francisco Javier Cano, Marc Carriquí, Rafael E. Coopman, Yusuke Mizokami, Danny Tholen, Dongliang Xiong
    2018 44
  • Insights from transcriptome profiling on the non-photosynthetic and stomatal signaling response of maize carbonic anhydrase mutants to low CO2
    Allison R. Kolbe, Anthony J. Studer, Omar E. Cornejo, Asaph B. Cousins
    BMC Genomics 2019 20 1
  • Stable Isotopes and Biosphere Atmosphere Interactions
    Christopher Still, William J. Riley, Brent R. Helliker, Joseph A. Berry
    2005
  • Stable Isotopes and Biosphere Atmosphere Interactions
    Lawrence B. Flanagan
    2005
  • Interactive Effect of GA3, N and P Ameliorate Growth, Seed and Fibre Yield by Enhancing Photosynthetic Capacity and Carbonic Anhydrase Activity of Linseed: A Dual Purpose Crop
    Mohammad N. Khan, Firoz Mohammad
    Journal of Integrative Agriculture 2013 12 7
  • Effect of short-term variations of environmental conditions on atmospheric CO18O isoforcing of different plant species
    Laura Gangi, Wolfgang Tappe, Harry Vereecken, Nicolas Brüggemann
    Agricultural and Forest Meteorology 2015 201
  • Mesophyll conductance: the leaf corridors for photosynthesis
    Jorge Gago, Danilo M. Daloso, Marc Carriquí, Miquel Nadal, Melanie Morales, Wagner L. Araújo, Adriano Nunes-Nesi, Jaume Flexas
    Biochemical Society Transactions 2020 48 2
  • Photosynthetic Nitrogen Assimilation and Associated Carbon and Respiratory Metabolism
    John A. Raven, Linda L. Handley, Mitchell Andrews
    2002 12
  • Comparison of carbonic anhydrase activity among various species of plantlets
    Wu Yanyou, Li Xiteng, Li Pingping, Zhao Xinzheng
    Plant Cell, Tissue and Organ Culture 2006 84 1
  • On the effect of heavy water (D2O) on carbon isotope fractionation in photosynthesis
    Guillaume Tcherkez, Graham D. Farquhar
    Functional Plant Biology 2008 35 3
  • Japanese Journal of Crop Science 2009 78 3

Article Information

vol. 112 no. 1 319-326
DOI 
https://doi.org/10.1104/pp.112.1.319
PubMed 
12226395

Published By 
American Society of Plant Biologists
Print ISSN 
0032-0889
Online ISSN 
1532-2548
Published Online 
September 01, 1996

Copyright & Usage 
Copyright © 1996 by American Society of Plant Biologists

PreviousNext
Back to top

Table of Contents

Download PDF
Email Article

Thank you for your interest in spreading the word on Plant Physiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Photosynthetic Gas Exchange and Discrimination against 13CO2 and C18O16O in Tobacco Plants Modified by an Antisense Construct to Have Low Chloroplastic Carbonic Anhydrase
(Your Name) has sent you a message from Plant Physiology
(Your Name) thought you would like to see the Plant Physiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Photosynthetic Gas Exchange and Discrimination against 13CO2 and C18O16O in Tobacco Plants Modified by an Antisense Construct to Have Low Chloroplastic Carbonic Anhydrase
T. G. Williams, L. B. Flanagan, J. R. Coleman
Plant Physiology Sep 1996, 112 (1) 319-326; DOI: 10.1104/pp.112.1.319

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Photosynthetic Gas Exchange and Discrimination against 13CO2 and C18O16O in Tobacco Plants Modified by an Antisense Construct to Have Low Chloroplastic Carbonic Anhydrase
T. G. Williams, L. B. Flanagan, J. R. Coleman
Plant Physiology Sep 1996, 112 (1) 319-326; DOI: 10.1104/pp.112.1.319
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF

In this issue

Plant Physiology
Vol. 112, Issue 1
Sep 1996
  • Table of Contents
  • Index by author

More in this TOC Section

  • In Vivo Ubiquinone Reduction Levels during Thermogenesis in Araceae
  • Identification of a Functional Homolog of the Yeast Copper Homeostasis Gene ATX1 from Arabidopsis
  • Protein Changes in Response to Progressive Water Deficit in Maize
Show more WHOLE PLANT, ENVIRONMENTAL, AND STRESS PHYSIOLOGY

Similar Articles

Our Content

  • Home
  • Current Issue
  • Plant Physiology Preview
  • Archive
  • Focus Collections
  • Classic Collections
  • The Plant Cell
  • Plant Direct
  • Plantae
  • ASPB

For Authors

  • Instructions
  • Submit a Manuscript
  • Editorial Board and Staff
  • Policies
  • Recognizing our Authors

For Reviewers

  • Instructions
  • Journal Miles
  • Policies

Other Services

  • Permissions
  • Librarian resources
  • Advertise in our journals
  • Alerts
  • RSS Feeds

Copyright © 2021 by The American Society of Plant Biologists

Powered by HighWire