Skip to main content

Main menu

  • Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Submit a Manuscript
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae

User menu

  • My alerts
  • Log in
  • Log out

Search

  • Advanced search
Plant Physiology
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae
  • My alerts
  • Log in
  • Log out
Plant Physiology

Advanced Search

  • Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Submit a Manuscript
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Follow plantphysiol on Twitter
  • Visit plantphysiol on Facebook
  • Visit Plantae
OtherWHOLE PLANT, ENVIRONMENTAL, AND STRESS PHYSIOLOGY
You have accessRestricted Access

Photosynthetic Electron Transport in Single Guard Cells as Measured by Scanning Electrochemical Microscopy

M. Tsionsky, Z. G. Cardon, A. J. Bard, R. B. Jackson
M. Tsionsky
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Z. G. Cardon
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A. J. Bard
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R. B. Jackson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site

Published March 1997. DOI: https://doi.org/10.1104/pp.113.3.895

  • Article
  • Info & Metrics
  • PDF
Loading
  • Copyright © 1997 by American Society of Plant Biologists

Abstract

Scanning electrochemical microscopy (SECM) is a powerful new tool for studying chemical and biological processes. It records changes in faradaic current as a microelectrode ([less than equal]7 [mu]m in diameter) is moved across the surface of a sample. The current varies as a function of both distance from the surface and the surface's chemical and electrical properties. We used SECM to examine in vivo topography and photosynthetic electron transport of individual guard cells in Tradescantia fluminensis, to our knowledge the first such analysis for an intact plant. We measured surface topography at the micrometer level and concentration profiles of O2 evolved in photosynthetic electron transport. Comparison of topography and oxygen profiles above single stomatal complexes clearly showed photosynthetic electron transport in guard cells, as indicated by induction of O2 evolution by photosynthetically active radiation. SECM is unique in its ability to measure topography and chemical fluxes, combining some of the attributes of patch clamping with scanning tunneling microscopy. In this paper we suggest several questions in plant physiology that it might address.

PreviousNext
Back to top

Table of Contents

Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on Plant Physiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Photosynthetic Electron Transport in Single Guard Cells as Measured by Scanning Electrochemical Microscopy
(Your Name) has sent you a message from Plant Physiology
(Your Name) thought you would like to see the Plant Physiology web site.
Citation Tools
Photosynthetic Electron Transport in Single Guard Cells as Measured by Scanning Electrochemical Microscopy
M. Tsionsky, Z. G. Cardon, A. J. Bard, R. B. Jackson
Plant Physiology Mar 1997, 113 (3) 895-901; DOI: 10.1104/pp.113.3.895

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Photosynthetic Electron Transport in Single Guard Cells as Measured by Scanning Electrochemical Microscopy
M. Tsionsky, Z. G. Cardon, A. J. Bard, R. B. Jackson
Plant Physiology Mar 1997, 113 (3) 895-901; DOI: 10.1104/pp.113.3.895
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF

In this issue

Plant Physiology
Vol. 113, Issue 3
Mar 1997
  • Table of Contents
  • Index by author

More in this TOC Section

  • Protein Changes in Response to Progressive Water Deficit in Maize
  • Induction of a Carbon-Starvation-Related Proteolysis in Whole Maize Plants Submitted to Light/Dark Cycles and to Extended Darkness
  • High-Temperature Perturbation of Starch Synthesis Is Attributable to Inhibition of ADP-Glucose Pyrophosphorylase by Decreased Levels of Glycerate-3-Phosphate in Growing Potato Tubers
Show more WHOLE PLANT, ENVIRONMENTAL, AND STRESS PHYSIOLOGY

Similar Articles

Our Content

  • Home
  • Current Issue
  • Plant Physiology Preview
  • Archive
  • Focus Collections
  • Classic Collections
  • The Plant Cell
  • Plant Direct
  • Plantae
  • ASPB

For Authors

  • Instructions
  • Submit a Manuscript
  • Editorial Board and Staff
  • Policies
  • Recognizing our Authors

For Reviewers

  • Instructions
  • Journal Miles
  • Policies

Other Services

  • Permissions
  • Librarian resources
  • Advertise in our journals
  • Alerts
  • RSS Feeds

Copyright © 2019 by The American Society of Plant Biologists

Powered by HighWire