Skip to main content

Main menu

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae

User menu

  • My alerts
  • Log in
  • Log out

Search

  • Advanced search
Plant Physiology
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae
  • My alerts
  • Log in
  • Log out
Plant Physiology

Advanced Search

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Follow plantphysiol on Twitter
  • Visit plantphysiol on Facebook
  • Visit Plantae
OtherDEVELOPMENT AND GROWTH REGULATION
You have accessRestricted Access

Expansins in Deepwater Rice Internodes

H. T. Cho, H. Kende
H. T. Cho
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
H. Kende
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site

Published April 1997. DOI: https://doi.org/10.1104/pp.113.4.1137

  • Article
  • Info & Metrics
  • PDF
Loading
  • Copyright ©1997 by American Society of Plant Biologists

Abstract

Cell walls of deepwater rice (Oryza sativa L.) internodes undergo long-term extension (creep) when placed under tension in acidic buffers. This is indicative of the action of the cell wall-loosening protein expansin. Wall extension had a pH optimum of around 4.0 and was abolished by boiling. Acid-induced extension of boiled cell walls could be reconstituted by addition of salt-extracted rice or cucumber cell wall proteins. Cucumber expansin antibody recognized a single protein band of 24.5-kD apparent molecular mass on immunoblots of rice cell wall proteins. Expansins were partially purified by concanavalin A affinity chromatography and sulfopropyl (SP) cation-exchange chromatography. The latter yielded two peaks with extension activity (SP20 and SP29), and immunoblot analysis showed that both of these active fractions contained expansin of 24.5-kD molecular mass. The N-terminal amino acid sequence of SP20 expansin is identical to that deduced from the rice expansin cDNA Os-EXP1. The N-terminal amino acid sequence of SP29 expansin matches that deduced from the rice expansin cDNA Os-EXP2 in six of eight amino acids. Our results show that two expansins occur in the cell walls of rice internodes and that they may mediate acid-induced wall extension.

PreviousNext
Back to top

Table of Contents

Download PDF
Email Article

Thank you for your interest in spreading the word on Plant Physiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Expansins in Deepwater Rice Internodes
(Your Name) has sent you a message from Plant Physiology
(Your Name) thought you would like to see the Plant Physiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Expansins in Deepwater Rice Internodes
H. T. Cho, H. Kende
Plant Physiology Apr 1997, 113 (4) 1137-1143; DOI: 10.1104/pp.113.4.1137

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Expansins in Deepwater Rice Internodes
H. T. Cho, H. Kende
Plant Physiology Apr 1997, 113 (4) 1137-1143; DOI: 10.1104/pp.113.4.1137
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF

In this issue

Plant Physiology
Vol. 113, Issue 4
Apr 1997
  • Table of Contents
  • Index by author

More in this TOC Section

  • The rms1 Mutant of Pea Has Elevated Indole-3-Acetic Acid Levels and Reduced Root-Sap Zeatin Riboside Content but Increased Branching Controlled by Graft-Transmissible Signal(s)
  • Bacterial Cellulose-Binding Domain Modulates in Vitro Elongation of Different Plant Cells
  • Gibberellin Dose-Response Regulation of GA4 Gene Transcript Levels in Arabidopsis
Show more DEVELOPMENT AND GROWTH REGULATION

Similar Articles

Our Content

  • Home
  • Current Issue
  • Plant Physiology Preview
  • Archive
  • Focus Collections
  • Classic Collections
  • The Plant Cell
  • Plant Direct
  • Plantae
  • ASPB

For Authors

  • Instructions
  • Submit a Manuscript
  • Editorial Board and Staff
  • Policies
  • Recognizing our Authors

For Reviewers

  • Instructions
  • Journal Miles
  • Policies

Other Services

  • Permissions
  • Librarian resources
  • Advertise in our journals
  • Alerts
  • RSS Feeds

Copyright © 2021 by The American Society of Plant Biologists

Powered by HighWire