Skip to main content

Main menu

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae

User menu

  • My alerts
  • Log in
  • Log out

Search

  • Advanced search
Plant Physiology
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae
  • My alerts
  • Log in
  • Log out
Plant Physiology

Advanced Search

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Follow plantphysiol on Twitter
  • Visit plantphysiol on Facebook
  • Visit Plantae
OtherGENE REGULATION AND MOLECULAR GENETICS
You have accessRestricted Access

Abundant Accumulation of the Calcium-Binding Molecular Chaperone Calreticulin in Specific Floral Tissues of Arabidopsis thaliana

D. E. Nelson, B. Glaunsinger, H. J. Bohnert
D. E. Nelson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
B. Glaunsinger
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
H. J. Bohnert
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site

Published May 1997. DOI: https://doi.org/10.1104/pp.114.1.29

  • Article
  • Info & Metrics
  • PDF
Loading
  • Copyright ©1997 by American Society of Plant Biologists

Abstract

Calreticulin (CRT) is a calcium-binding protein in the endoplasmic reticulum (ER) with an established role as a molecular chaperone. An additional function in signal transduction, specifically in calcium distribution, is suggested but not proven. We have analyzed the expression pattern of Arabidopsis thaliana CRTs for a comparison with these proposed roles. Three CRT genes were expressed, with identities of the encoded proteins ranging from 54 to 86%. Protein motifs with established functions found in CRTs of other species were conserved. CRT was found in all of the cells in low amounts, whereas three distinct floral tissues showed abundant expression: secreting nectaries, ovules early in development, and a set of subepidermal cells near the abaxial surface of the anther. Localization in the developing endosperm, which is characterized by high protein synthesis rates, can be reconciled with a specific chaperone function. Equally, nectar production and secretion, a developmental stage marked by abundant ER, may require abundant CRT to accommodate the traffic of secretory proteins through the ER. Localization of CRT in the anthers, which are degenerating at the time of maximum expression of CRT, cannot easily be reconciled with a chaperone function but may indicate a role for CRT in anther maturation or dehiscence.

PreviousNext
Back to top

Table of Contents

Download PDF
Email Article

Thank you for your interest in spreading the word on Plant Physiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Abundant Accumulation of the Calcium-Binding Molecular Chaperone Calreticulin in Specific Floral Tissues of Arabidopsis thaliana
(Your Name) has sent you a message from Plant Physiology
(Your Name) thought you would like to see the Plant Physiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abundant Accumulation of the Calcium-Binding Molecular Chaperone Calreticulin in Specific Floral Tissues of Arabidopsis thaliana
D. E. Nelson, B. Glaunsinger, H. J. Bohnert
Plant Physiology May 1997, 114 (1) 29-37; DOI: 10.1104/pp.114.1.29

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Abundant Accumulation of the Calcium-Binding Molecular Chaperone Calreticulin in Specific Floral Tissues of Arabidopsis thaliana
D. E. Nelson, B. Glaunsinger, H. J. Bohnert
Plant Physiology May 1997, 114 (1) 29-37; DOI: 10.1104/pp.114.1.29
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF

In this issue

Plant Physiology
Vol. 114, Issue 1
May 1997
  • Table of Contents
  • Index by author

More in this TOC Section

  • Direct Evidence for Rapid Degradation ofBacillus thuringiensis Toxin mRNA as a Cause of Poor Expression in Plants
  • Transcription from Heterologous rRNA Operon Promoters in Chloroplasts Reveals Requirement for Specific Activating Factors
  • Cloning of Sucrose:Sucrose 1-Fructosyltransferase from Onion and Synthesis of Structurally Defined Fructan Molecules from Sucrose
Show more GENE REGULATION AND MOLECULAR GENETICS

Similar Articles

Our Content

  • Home
  • Current Issue
  • Plant Physiology Preview
  • Archive
  • Focus Collections
  • Classic Collections
  • The Plant Cell
  • Plant Direct
  • Plantae
  • ASPB

For Authors

  • Instructions
  • Submit a Manuscript
  • Editorial Board and Staff
  • Policies
  • Recognizing our Authors

For Reviewers

  • Instructions
  • Journal Miles
  • Policies

Other Services

  • Permissions
  • Librarian resources
  • Advertise in our journals
  • Alerts
  • RSS Feeds

Copyright © 2021 by The American Society of Plant Biologists

Powered by HighWire