Skip to main content

Main menu

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae

User menu

  • My alerts
  • Log in

Search

  • Advanced search
Plant Physiology
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae
  • My alerts
  • Log in
Plant Physiology

Advanced Search

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Follow plantphysiol on Twitter
  • Visit plantphysiol on Facebook
  • Visit Plantae
OtherWHOLE PLANT, ENVIRONMENTAL, AND STRESS PHYSIOLOGY
You have accessRestricted Access

Overproduction of Ascorbate Peroxidase in the Tobacco Chloroplast Does Not Provide Protection against Ozone

G. Torsethaugen, L. H. Pitcher, B. A. Zilinskas, E. J. Pell
G. Torsethaugen
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
L. H. Pitcher
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
B. A. Zilinskas
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
E. J. Pell
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site

Published June 1997. DOI: https://doi.org/10.1104/pp.114.2.529

  • Article
  • Info & Metrics
  • PDF
Loading
  • Copyright © 1997 by American Society of Plant Biologists

Abstract

Transgenic tobacco (Nicotiana tabacum cv Bel W3) plants were used to test the hypothesis that protection from O3 injury could be conferred by overproduction of ascorbate peroxidase (APX) in the chloroplast. The 10-fold increase in soluble APX activity in the chloroplast was expected to alleviate an implied increase in oxidative potential and prevent damage caused by O3. Three different O3 exposure experiments (one acute and two chronic) with two replicates each were conducted. APX activity in nontransgenic plants increased in response to chronic O3 exposure. However, most responses to O3 were similar between transgenic and nontransgenic plants. These included reductions in net photosynthesis and stomatal conductance, increases in ethylene emission and visible injury, and a decline in the level of the small subunit of ribulose-1,5-biphosphate carboxylase/oxygenase mRNA transcripts observed in response to the air pollutant in the acute and/or chronic experiments. No O3-induced effect on ribulose-1,5-biphosphate carboxylase/oxygenase quantity was observed in the chronic experiments. O3 did not induce acceleration of senescence, as expected from studies with most other species; rather, the tobacco plants rapidly developed necrotic lesions. Thus, overproduction of APX in the chloroplast did not protect this cultivar of tobacco from O3.

PreviousNext
Back to top

Table of Contents

Download PDF
Email Article

Thank you for your interest in spreading the word on Plant Physiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Overproduction of Ascorbate Peroxidase in the Tobacco Chloroplast Does Not Provide Protection against Ozone
(Your Name) has sent you a message from Plant Physiology
(Your Name) thought you would like to see the Plant Physiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Overproduction of Ascorbate Peroxidase in the Tobacco Chloroplast Does Not Provide Protection against Ozone
G. Torsethaugen, L. H. Pitcher, B. A. Zilinskas, E. J. Pell
Plant Physiology Jun 1997, 114 (2) 529-537; DOI: 10.1104/pp.114.2.529

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Overproduction of Ascorbate Peroxidase in the Tobacco Chloroplast Does Not Provide Protection against Ozone
G. Torsethaugen, L. H. Pitcher, B. A. Zilinskas, E. J. Pell
Plant Physiology Jun 1997, 114 (2) 529-537; DOI: 10.1104/pp.114.2.529
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF

In this issue

Plant Physiology
Vol. 114, Issue 2
Jun 1997
  • Table of Contents
  • Index by author

More in this TOC Section

  • Protein Changes in Response to Progressive Water Deficit in Maize
  • Induction of a Carbon-Starvation-Related Proteolysis in Whole Maize Plants Submitted to Light/Dark Cycles and to Extended Darkness
  • High-Temperature Perturbation of Starch Synthesis Is Attributable to Inhibition of ADP-Glucose Pyrophosphorylase by Decreased Levels of Glycerate-3-Phosphate in Growing Potato Tubers
Show more WHOLE PLANT, ENVIRONMENTAL, AND STRESS PHYSIOLOGY

Similar Articles

Our Content

  • Home
  • Current Issue
  • Plant Physiology Preview
  • Archive
  • Focus Collections
  • Classic Collections
  • The Plant Cell
  • Plant Direct
  • Plantae
  • ASPB

For Authors

  • Instructions
  • Submit a Manuscript
  • Editorial Board and Staff
  • Policies
  • Recognizing our Authors

For Reviewers

  • Instructions
  • Journal Miles
  • Policies

Other Services

  • Permissions
  • Librarian resources
  • Advertise in our journals
  • Alerts
  • RSS Feeds

Copyright © 2021 by The American Society of Plant Biologists

Powered by HighWire