Skip to main content

Main menu

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae

User menu

  • My alerts
  • Log in
  • Log out

Search

  • Advanced search
Plant Physiology
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae
  • My alerts
  • Log in
  • Log out
Plant Physiology

Advanced Search

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Follow plantphysiol on Twitter
  • Visit plantphysiol on Facebook
  • Visit Plantae
OtherDEVELOPMENT AND GROWTH REGULATION
You have accessRestricted Access

Pollination Increases Gibberellin Levels in Developing Ovaries of Seeded Varieties of Citrus

W. Ben-Cheikh, J. Perez-Botella, F. R. Tadeo, M. Talon, E. Primo-Millo
W. Ben-Cheikh
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J. Perez-Botella
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
F. R. Tadeo
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M. Talon
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
E. Primo-Millo
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site

Published June 1997. DOI: https://doi.org/10.1104/pp.114.2.557

  • Article
  • Info & Metrics
  • PDF
Loading
  • Copyright © 1997 by American Society of Plant Biologists

Abstract

Reproductive and vegetative tissues of the seeded Pineapple cultivars of sweet orange (Citrus sinensis L.) contained the following C-13 hydroxylated gibberellins (GAs): GA53, GA17, GA19, GA20, GA1, GA29, and GA8, as well as GA97, 3-epi-GA1, and several uncharacterized GAs. The inclusion of 3-epi-GA1 as an endogenous substance was based on measurements of the isomerization rates of previously added [2H2]GA1. Pollination enhanced amounts of GA19, GA20, GA29, and GA8 in developing ovaries. Levels of GA1 increased from 5.0 to 9.5 ng/g dry weight during anthesis and were reduced thereafter. The amount of GA in mature pollen was very low. Emasculation reduced GA levels and caused a rapid 100% ovary abscission. This effect was partially counteracted by either pollination or application of GA3. In pollinated ovaries, repeated paclobutrazol applications decreased the amount of GA and increased ovary abscission, although the pattern of continuous decline was different from the sudden abscission induced by emasculation. The above results indicate that, in citrus, pollination increases GA levels and reduces ovary abscission and that the presence of exogenous GA3 in unpollinated ovaries also suppresses abscission. Evidence is also presented that pollination and GAs do not, as is generally assumed, suppress ovary abscission through the reactivation of cell division.

PreviousNext
Back to top

Table of Contents

Download PDF
Email Article

Thank you for your interest in spreading the word on Plant Physiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Pollination Increases Gibberellin Levels in Developing Ovaries of Seeded Varieties of Citrus
(Your Name) has sent you a message from Plant Physiology
(Your Name) thought you would like to see the Plant Physiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Pollination Increases Gibberellin Levels in Developing Ovaries of Seeded Varieties of Citrus
W. Ben-Cheikh, J. Perez-Botella, F. R. Tadeo, M. Talon, E. Primo-Millo
Plant Physiology Jun 1997, 114 (2) 557-564; DOI: 10.1104/pp.114.2.557

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Pollination Increases Gibberellin Levels in Developing Ovaries of Seeded Varieties of Citrus
W. Ben-Cheikh, J. Perez-Botella, F. R. Tadeo, M. Talon, E. Primo-Millo
Plant Physiology Jun 1997, 114 (2) 557-564; DOI: 10.1104/pp.114.2.557
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF

In this issue

Plant Physiology
Vol. 114, Issue 2
Jun 1997
  • Table of Contents
  • Index by author

More in this TOC Section

  • The rms1 Mutant of Pea Has Elevated Indole-3-Acetic Acid Levels and Reduced Root-Sap Zeatin Riboside Content but Increased Branching Controlled by Graft-Transmissible Signal(s)
  • Bacterial Cellulose-Binding Domain Modulates in Vitro Elongation of Different Plant Cells
  • Gibberellin Dose-Response Regulation of GA4 Gene Transcript Levels in Arabidopsis
Show more DEVELOPMENT AND GROWTH REGULATION

Similar Articles

Our Content

  • Home
  • Current Issue
  • Plant Physiology Preview
  • Archive
  • Focus Collections
  • Classic Collections
  • The Plant Cell
  • Plant Direct
  • Plantae
  • ASPB

For Authors

  • Instructions
  • Submit a Manuscript
  • Editorial Board and Staff
  • Policies
  • Recognizing our Authors

For Reviewers

  • Instructions
  • Journal Miles
  • Policies

Other Services

  • Permissions
  • Librarian resources
  • Advertise in our journals
  • Alerts
  • RSS Feeds

Copyright © 2021 by The American Society of Plant Biologists

Powered by HighWire