Skip to main content

Main menu

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae

User menu

  • My alerts
  • Log in

Search

  • Advanced search
Plant Physiology
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae
  • My alerts
  • Log in
Plant Physiology

Advanced Search

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Follow plantphysiol on Twitter
  • Visit plantphysiol on Facebook
  • Visit Plantae
OtherBIOENERGETICS
You have accessRestricted Access

Inorganic Carbon Accumulation Stimulates Linear Electron Flow to Artificial Electron Acceptors of Photosystem I in Air-Grown Cells of the Cyanobacterium Synechococcus UTEX 625

Q. Li, D. T. Canvin
Q. Li
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D. T. Canvin
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site

Published August 1997. DOI: https://doi.org/10.1104/pp.114.4.1273

  • Article
  • Info & Metrics
  • PDF
Loading
  • Copyright © 1997 by American Society of Plant Biologists

Abstract

The effect of inorganic carbon (Ci) transport and accumulation on photosynthetic electron transport was studied in air-grown cells of the cyanobacterium Synechococcus UTEX 625. When the cells were depleted of Ci, linear photosynthetic electron flow was almost completely inhibited in the presence of the photosystem I (PSI) acceptor N,N-dimethyl-p-nitrosoaniline (PNDA). The addition of Ci to these cells, in which CO2 fixation was inhibited with glycolaldehyde, greatly stimulated linear electron flow and resulted in increased levels of photochemical quenching and O2 evolution. In aerobic conditions substantial quenching resulted from methyl viologen (MV) addition and further quenching was not observed upon the addition of Ci. In anaerobic conditions MV addition did not result in quenching until Ci was added. Intracellular Ci pools were formed when MV was present in aerobic or anaerobic conditions or PNDA was present in aerobic conditions. There was no inhibitory effect of Ci depletion on electron flow to 2,6-dimethylbenzoquinone and oxidized diaminodurene, which accept electrons from photosystem II. The degree of stimulation of PNDA-dependent O2 evolution varied with the Ci concentration. The extracellular Ci, concentration required for a half-maximum rate (K1/2) was 3.8 [mu]M and the intracellular K1/2 was 1.4 mM for the stimulation of PNDA reduction. These values agreed closely with the K1/2 values of extracellular and intracellular Ci for O2 photoreduction. Linear electron flow to artificial electron acceptors of PSI was enhanced by intracellular Ci, which appeared to exert an effect on PSI or on the intersystem electron transport chain.

PreviousNext
Back to top

Table of Contents

Download PDF
Email Article

Thank you for your interest in spreading the word on Plant Physiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Inorganic Carbon Accumulation Stimulates Linear Electron Flow to Artificial Electron Acceptors of Photosystem I in Air-Grown Cells of the Cyanobacterium Synechococcus UTEX 625
(Your Name) has sent you a message from Plant Physiology
(Your Name) thought you would like to see the Plant Physiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Inorganic Carbon Accumulation Stimulates Linear Electron Flow to Artificial Electron Acceptors of Photosystem I in Air-Grown Cells of the Cyanobacterium Synechococcus UTEX 625
Q. Li, D. T. Canvin
Plant Physiology Aug 1997, 114 (4) 1273-1281; DOI: 10.1104/pp.114.4.1273

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Inorganic Carbon Accumulation Stimulates Linear Electron Flow to Artificial Electron Acceptors of Photosystem I in Air-Grown Cells of the Cyanobacterium Synechococcus UTEX 625
Q. Li, D. T. Canvin
Plant Physiology Aug 1997, 114 (4) 1273-1281; DOI: 10.1104/pp.114.4.1273
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF

In this issue

Plant Physiology
Vol. 114, Issue 4
Aug 1997
  • Table of Contents
  • Index by author

More in this TOC Section

  • A Novel Gene, pmgA, Specifically Regulates Photosystem Stoichiometry in the CyanobacteriumSynechocystis Species PCC 6803 in Response to High Light
  • Analysis of Respiratory Chain Regulation in Roots of Soybean Seedlings
  • Characterization of a Red Beet Protein Homologous to the Essential 36-Kilodalton Subunit of the Yeast V-Type ATPase
Show more BIOENERGETICS

Similar Articles

Our Content

  • Home
  • Current Issue
  • Plant Physiology Preview
  • Archive
  • Focus Collections
  • Classic Collections
  • The Plant Cell
  • Plant Direct
  • Plantae
  • ASPB

For Authors

  • Instructions
  • Submit a Manuscript
  • Editorial Board and Staff
  • Policies
  • Recognizing our Authors

For Reviewers

  • Instructions
  • Journal Miles
  • Policies

Other Services

  • Permissions
  • Librarian resources
  • Advertise in our journals
  • Alerts
  • RSS Feeds

Copyright © 2021 by The American Society of Plant Biologists

Powered by HighWire