Skip to main content

Main menu

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae

User menu

  • My alerts
  • Log in
  • Log out

Search

  • Advanced search
Plant Physiology
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae
  • My alerts
  • Log in
  • Log out
Plant Physiology

Advanced Search

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Follow plantphysiol on Twitter
  • Visit plantphysiol on Facebook
  • Visit Plantae
OtherDEVELOPMENT AND GROWTH REGULATION
You have accessRestricted Access

The Dark-Adaptation Response of the De-Etiolated Pea Mutant lip1 Is Modulated by External Signals and Endogenous Programs

S. Frances, W. F. Thompson
S. Frances
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
W. F. Thompson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site

Published September 1997. DOI: https://doi.org/10.1104/pp.115.1.23

  • Article
  • Info & Metrics
  • PDF
Loading
  • Copyright © 1997 by American Society of Plant Biologists

Abstract

The lip1 mutant of pea (Pisum sativum L.) exhibits a de-etiolated phenotype. When grown in darkness, lip1 plants have several characteristics normally associated only with light-grown plants. Young wild-type (WT) seedlings accumulate high levels of transcripts from plastid-related genes (such as those encoding chlorophyll a/b-binding proteins, ferredoxin, and the small subunit of Rubisco) only in the light. In contrast, regardless of the light conditions under which the plants are grown, young mutant seedlings accumulate transcript levels equal to or greater than those seen in light-grown WT seedlings of the same age. Under some conditions, light-grown lip1 seedlings failed to respond to dark treatment. The largest response to darkness observed in the mutant occurred when older seedlings were first grown under low-light conditions before transfer to darkness. The mutant's inability to respond to darkness is not due to a gross disturbance in the circadian clock. We conclude that environmental signals (light) and endogenous programs (developmental and circadian) regulate gene expression in both WT and mutant plants. However, mutant seedlings exhibit a developmentally regulated and exaggerated response to light. In addition, the effect of the mutation may be greatest during a brief period early in development.

PreviousNext
Back to top

Table of Contents

Download PDF
Email Article

Thank you for your interest in spreading the word on Plant Physiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
The Dark-Adaptation Response of the De-Etiolated Pea Mutant lip1 Is Modulated by External Signals and Endogenous Programs
(Your Name) has sent you a message from Plant Physiology
(Your Name) thought you would like to see the Plant Physiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
The Dark-Adaptation Response of the De-Etiolated Pea Mutant lip1 Is Modulated by External Signals and Endogenous Programs
S. Frances, W. F. Thompson
Plant Physiology Sep 1997, 115 (1) 23-28; DOI: 10.1104/pp.115.1.23

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
The Dark-Adaptation Response of the De-Etiolated Pea Mutant lip1 Is Modulated by External Signals and Endogenous Programs
S. Frances, W. F. Thompson
Plant Physiology Sep 1997, 115 (1) 23-28; DOI: 10.1104/pp.115.1.23
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF

In this issue

Plant Physiology
Vol. 115, Issue 1
Sep 1997
  • Table of Contents
  • Index by author

More in this TOC Section

  • The rms1 Mutant of Pea Has Elevated Indole-3-Acetic Acid Levels and Reduced Root-Sap Zeatin Riboside Content but Increased Branching Controlled by Graft-Transmissible Signal(s)
  • Bacterial Cellulose-Binding Domain Modulates in Vitro Elongation of Different Plant Cells
  • Gibberellin Dose-Response Regulation of GA4 Gene Transcript Levels in Arabidopsis
Show more DEVELOPMENT AND GROWTH REGULATION

Similar Articles

Our Content

  • Home
  • Current Issue
  • Plant Physiology Preview
  • Archive
  • Focus Collections
  • Classic Collections
  • The Plant Cell
  • Plant Direct
  • Plantae
  • ASPB

For Authors

  • Instructions
  • Submit a Manuscript
  • Editorial Board and Staff
  • Policies
  • Recognizing our Authors

For Reviewers

  • Instructions
  • Journal Miles
  • Policies

Other Services

  • Permissions
  • Librarian resources
  • Advertise in our journals
  • Alerts
  • RSS Feeds

Copyright © 2021 by The American Society of Plant Biologists

Powered by HighWire