Skip to main content

Main menu

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae

User menu

  • My alerts
  • Log in

Search

  • Advanced search
Plant Physiology
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae
  • My alerts
  • Log in
Plant Physiology

Advanced Search

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Follow plantphysiol on Twitter
  • Visit plantphysiol on Facebook
  • Visit Plantae
OtherBIOCHEMISTRY AND ENZYMOLOGY
You have accessRestricted Access

Cellulose and Callose Biosynthesis in Higher Plants (I. Solubilization and Separation of (1->3)- and (1->4)-[beta]-Glucan Synthase Activities from Mung Bean)

K. Kudlicka, R. M. Brown Jr
K. Kudlicka
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R. M. Brown Jr
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site

Published October 1997. DOI: https://doi.org/10.1104/pp.115.2.643

  • Article
  • Info & Metrics
  • PDF
Loading
  • Copyright © 1997 by American Society of Plant Biologists

Abstract

(1->3)- and (1->4)-[beta]-glucan synthase activities from higher plants have been physically separated by gel electrophoresis in nondenaturing conditions. The two glucan synthases show different mobilities in native polyacrylamide gels. Further separation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed a different polypeptide composition in these synthases. Three polypeptides (64, 54, and 32 kD) seem to be common to both synthase activities, whereas two polypeptides (78 and 38 kD) are associated only with callose synthase activity. Twelve polypeptides (170, 136, 108, 96, 83, 72, 66, 60, 52, 48, 42, and 34 kD) appear to be specifically associated with cellulose synthase activity. The successful separation of (1->3)- and (1->-4)-[beta]-glucan synthase activities was based on the manipulation of digitonin concentrations used in the solubilization of membrane proteins. At low dipitomin concentrations (0.05 and 0.1%), the ratio of the cellulose to callose synthase activity was higher. At higher digitonin (0.5–1%) concentrations, the ratio of the callose to cellulose synthase activity was higher. Rosette-like particles with attached product were observed in samples taken from the top of the stacking gel, where only cellulose was synthesized. Smaller (nonrosette) particles were found in the running gel, where only callose was synthesized. These findings suggest that a higher level of subunit organization is required for in vitro cellulose synthesis in comparison with callose assembly.

PreviousNext
Back to top

Table of Contents

Download PDF
Email Article

Thank you for your interest in spreading the word on Plant Physiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Cellulose and Callose Biosynthesis in Higher Plants (I. Solubilization and Separation of (1->3)- and (1->4)-[beta]-Glucan Synthase Activities from Mung Bean)
(Your Name) has sent you a message from Plant Physiology
(Your Name) thought you would like to see the Plant Physiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Cellulose and Callose Biosynthesis in Higher Plants (I. Solubilization and Separation of (1->3)- and (1->4)-[beta]-Glucan Synthase Activities from Mung Bean)
K. Kudlicka, R. M. Brown Jr
Plant Physiology Oct 1997, 115 (2) 643-656; DOI: 10.1104/pp.115.2.643

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Cellulose and Callose Biosynthesis in Higher Plants (I. Solubilization and Separation of (1->3)- and (1->4)-[beta]-Glucan Synthase Activities from Mung Bean)
K. Kudlicka, R. M. Brown Jr
Plant Physiology Oct 1997, 115 (2) 643-656; DOI: 10.1104/pp.115.2.643
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF

In this issue

Plant Physiology
Vol. 115, Issue 2
Oct 1997
  • Table of Contents
  • Index by author

More in this TOC Section

  • (+)-Germacrene A Biosynthesis
  • Dedicated Roles of Plastid Transketolases during the Early Onset of Isoprenoid Biogenesis in Pepper Fruits1
  • Characterization of Euphorbia characias Latex Amine Oxidase
Show more BIOCHEMISTRY AND ENZYMOLOGY

Similar Articles

Our Content

  • Home
  • Current Issue
  • Plant Physiology Preview
  • Archive
  • Focus Collections
  • Classic Collections
  • The Plant Cell
  • Plant Direct
  • Plantae
  • ASPB

For Authors

  • Instructions
  • Submit a Manuscript
  • Editorial Board and Staff
  • Policies
  • Recognizing our Authors

For Reviewers

  • Instructions
  • Journal Miles
  • Policies

Other Services

  • Permissions
  • Librarian resources
  • Advertise in our journals
  • Alerts
  • RSS Feeds

Copyright © 2021 by The American Society of Plant Biologists

Powered by HighWire