Skip to main content

Main menu

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae

User menu

  • My alerts
  • Log in
  • Log out

Search

  • Advanced search
Plant Physiology
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae
  • My alerts
  • Log in
  • Log out
Plant Physiology

Advanced Search

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Follow plantphysiol on Twitter
  • Visit plantphysiol on Facebook
  • Visit Plantae
OtherWHOLE PLANT, ENVIRONMENTAL, AND STRESS PHYSIOLOGY
You have accessRestricted Access

Flavonoid-Peroxidase Reaction as a Detoxification Mechanism of Plant Cells against H2O2

H. Yamasaki, Y. Sakihama, N. Ikehara
H. Yamasaki
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Y. Sakihama
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
N. Ikehara
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site

Published December 1997. DOI: https://doi.org/10.1104/pp.115.4.1405

  • Article
  • Info & Metrics
  • PDF
Loading
  • Copyright © 1997 by American Society of Plant Biologists

Abstract

Recent studies have revealed that dietary flavonoids are potent radical scavengers, acting in a manner similar to ascorbate and [alpha]-tocopherol. However, it is still not clear whether flavonoids have a similar antioxidative function in plants. We examined the possibility that flavonoids could function as stress protectants in plant cells by scavenging H2O2. Two major flavonoids, quercetin and kaempferol glycosides, were isolated from leaves of the tropical tree Schefflera arboricola Hayata. Both glycosides and aglycones of isolated flavonols were oxidized by H2O2 in the presence of horse-radish peroxidase and/or in a soluble fraction of S. arboricola leaf extract. The rates of oxidation were in the order quercetin > kaempferol > quercetin glycoside >> kaempferol glycoside. Judging from the effects of inhibitors such as KCN, p-chloromercuribenzoate, and 3-amino-1H-1,2,4-triazole, we conclude that guaiacol peroxidase in the soluble fraction catalyzes H2O2-dependent oxidation of flavonols. In the flavonol-guaiacol peroxidase reaction, ascorbate had the potential to regenerate flavonols by reducing the oxidized product. These results provide further evidence that the flavonoid-peroxidase reaction can function as a mechanism for H2O2 scavenging in plants.

PreviousNext
Back to top

Table of Contents

Download PDF
Email Article

Thank you for your interest in spreading the word on Plant Physiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Flavonoid-Peroxidase Reaction as a Detoxification Mechanism of Plant Cells against H2O2
(Your Name) has sent you a message from Plant Physiology
(Your Name) thought you would like to see the Plant Physiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Flavonoid-Peroxidase Reaction as a Detoxification Mechanism of Plant Cells against H2O2
H. Yamasaki, Y. Sakihama, N. Ikehara
Plant Physiology Dec 1997, 115 (4) 1405-1412; DOI: 10.1104/pp.115.4.1405

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Flavonoid-Peroxidase Reaction as a Detoxification Mechanism of Plant Cells against H2O2
H. Yamasaki, Y. Sakihama, N. Ikehara
Plant Physiology Dec 1997, 115 (4) 1405-1412; DOI: 10.1104/pp.115.4.1405
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF

In this issue

Plant Physiology
Vol. 115, Issue 4
Dec 1997
  • Table of Contents
  • Index by author

More in this TOC Section

  • Rate-Limiting Steps in Selenium Assimilation and Volatilization by Indian Mustard
  • In Vivo Ubiquinone Reduction Levels during Thermogenesis in Araceae
  • Identification of a Functional Homolog of the Yeast Copper Homeostasis Gene ATX1 from Arabidopsis
Show more WHOLE PLANT, ENVIRONMENTAL, AND STRESS PHYSIOLOGY

Similar Articles

Our Content

  • Home
  • Current Issue
  • Plant Physiology Preview
  • Archive
  • Focus Collections
  • Classic Collections
  • The Plant Cell
  • Plant Direct
  • Plantae
  • ASPB

For Authors

  • Instructions
  • Submit a Manuscript
  • Editorial Board and Staff
  • Policies
  • Recognizing our Authors

For Reviewers

  • Instructions
  • Journal Miles
  • Policies

Other Services

  • Permissions
  • Librarian resources
  • Advertise in our journals
  • Alerts
  • RSS Feeds

Copyright © 2021 by The American Society of Plant Biologists

Powered by HighWire