Skip to main content

Main menu

  • Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Submit a Manuscript
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae

User menu

  • My alerts
  • Log in

Search

  • Advanced search
Plant Physiology
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae
  • My alerts
  • Log in
Plant Physiology

Advanced Search

  • Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Submit a Manuscript
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Follow plantphysiol on Twitter
  • Visit plantphysiol on Facebook
  • Visit Plantae
Research ArticleENVIRONMENTAL AND STRESS PHYSIOLOGY
You have accessRestricted Access

Apoplastic pH and Fe3+ Reduction in Intact Sunflower Leaves

Harald U. Kosegarten, Bernd Hoffmann, Konrad Mengel
Harald U. Kosegarten
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Bernd Hoffmann
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Konrad Mengel
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site

Published December 1999. DOI: https://doi.org/10.1104/pp.121.4.1069

  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading
  • Copyright © 1999 American Society of Plant Physiologists

Abstract

It has been hypothesized that under NO3 − nutrition a high apoplastic pH in leaves depresses Fe3+ reductase activity and thus the subsequent Fe2+ transport across the plasmalemma, inducing Fe chlorosis. The apoplastic pH in young green leaves of sunflower (Helianthus annuus L.) was measured by fluorescence ratio after xylem sap infiltration. It was shown that NO3 − nutrition significantly increased apoplastic pH at distinct interveinal sites (pH ≥ 6.3) and was confined to about 10% of the whole interveinal leaf apoplast. These apoplastic pH increases presumably derive from NO3 −/proton cotransport and are supposed to be related to growing cells of a young leaf; they were not found in the case of sole NH4 + or NH4NO3 nutrition. Complementary to pH measurements, the formation of Fe2+-ferrozine from Fe3+-citrate was monitored in the xylem apoplast of intact leaves in the presence of buffers at different xylem apoplastic pH by means of image analysis. This analysis revealed that Fe3+reduction increased with decreasing apoplastic pH, with the highest rates at around pH 5.0. In analogy to the monitoring of Fe3+ reduction in the leaf xylem, we suggest that under alkaline nutritional conditions at interveinal microsites of increased apoplastic pH, Fe3+ reduction is depressed, inducing leaf chlorosis. The apoplastic pH in the xylem vessels remained low in the still-green veins of leaves with intercostal chlorosis.

  • Received June 7, 1999.
  • Accepted September 4, 1999.
View Full Text
PreviousNext
Back to top

Table of Contents

Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on Plant Physiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Apoplastic pH and Fe3+ Reduction in Intact Sunflower Leaves
(Your Name) has sent you a message from Plant Physiology
(Your Name) thought you would like to see the Plant Physiology web site.
Citation Tools
Apoplastic pH and Fe3+ Reduction in Intact Sunflower Leaves
Harald U. Kosegarten, Bernd Hoffmann, Konrad Mengel
Plant Physiology Dec 1999, 121 (4) 1069-1079; DOI: 10.1104/pp.121.4.1069

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Apoplastic pH and Fe3+ Reduction in Intact Sunflower Leaves
Harald U. Kosegarten, Bernd Hoffmann, Konrad Mengel
Plant Physiology Dec 1999, 121 (4) 1069-1079; DOI: 10.1104/pp.121.4.1069
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • OUTLOOK
    • ACKNOWLEDGMENT
    • Footnotes
    • LITERATURE CITED
  • Figures & Data
  • Info & Metrics
  • PDF

In this issue

Plant Physiology: 121 (4)
Plant Physiology
Vol. 121, Issue 4
Dec 1999
  • Table of Contents
  • About the Cover
  • Index by author
View this article with LENS

More in this TOC Section

  • Selenium Assimilation and Volatilization from Dimethylselenoniopropionate by Indian Mustard
  • Subcellular Localization and Speciation of Nickel in Hyperaccumulator and Non-Accumulator ThlaspiSpecies
  • Calcium-Independent Activation of Salicylic Acid-Induced Protein Kinase and a 40-Kilodalton Protein Kinase by Hyperosmotic Stress
Show more ENVIRONMENTAL AND STRESS PHYSIOLOGY

Similar Articles

Our Content

  • Home
  • Current Issue
  • Plant Physiology Preview
  • Archive
  • Focus Collections
  • Classic Collections
  • The Plant Cell
  • Plant Direct
  • Plantae
  • ASPB

For Authors

  • Instructions
  • Submit a Manuscript
  • Editorial Board and Staff
  • Policies
  • Recognizing our Authors

For Reviewers

  • Instructions
  • Journal Miles
  • Policies

Other Services

  • Permissions
  • Librarian resources
  • Advertise in our journals
  • Alerts
  • RSS Feeds

Copyright © 2019 by The American Society of Plant Biologists

Powered by HighWire