- Copyright © 1999 American Society of Plant Physiologists
Abstract
Synthesis of polyhydroxyalkanoates (PHAs) from intermediates of fatty acid β-oxidation was used as a tool to study fatty acid degradation in developing seeds of Arabidopsis. Transgenic plants expressing a peroxisomal PHA synthase under the control of a napin promoter accumulated PHA in developing seeds to a final level of 0.06 mg g−1 dry weight. In plants co-expressing a plastidial acyl-acyl carrier protein thioesterase from Cuphea lanceolata and a peroxisomal PHA synthase, approximately 18-fold more PHA accumulated in developing seeds. The proportion of 3-hydroxydecanoic acid monomer in the PHA was strongly increased, indicating a large flow of capric acid toward β-oxidation. Furthermore, expression of the peroxisomal PHA synthase in an Arabidopsis mutant deficient in the enzyme diacylglycerol acyltransferase resulted in a 10-fold increase in PHA accumulation in developing seeds. These data indicate that plants can respond to the inadequate incorporation of fatty acids into triacylglycerides by recycling the fatty acids via β-oxidation and that a considerable flow toward β-oxidation can occur even in a plant tissue primarily devoted to the accumulation of storage lipids.
- Received June 3, 1999.
- Accepted September 2, 1999.