Skip to main content

Main menu

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae

User menu

  • My alerts
  • Log in

Search

  • Advanced search
Plant Physiology
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae
  • My alerts
  • Log in
Plant Physiology

Advanced Search

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Follow plantphysiol on Twitter
  • Visit plantphysiol on Facebook
  • Visit Plantae
Research ArticleCELL BIOLOGY AND SIGNAL TRANSDUCTION
You have accessRestricted Access

Initial Binding of Preproteins Involving the Toc159 Receptor Can Be Bypassed during Protein Import into Chloroplasts

Kunhua Chen, Xuejun Chen, Danny J. Schnell
Kunhua Chen
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Xuejun Chen
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Danny J. Schnell
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site

Published March 2000. DOI: https://doi.org/10.1104/pp.122.3.813

  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading
  • Copyright © 2000 American Society of Plant Physiologists

Abstract

Two integral outer envelope GTPases, Toc34 and Toc86, are proposed to regulate the recognition and translocation of nuclear-encoded preproteins during the early stages of protein import into chloroplasts. Defining the precise roles of Toc86 and Toc34 has been complicated by the inability to distinguish their GTPase activities. Furthermore, the assignment of Toc86 function is rendered equivocal by recent reports suggesting that the standard protocol for the isolation of chloroplasts results in significant proteolysis of Toc86 (B. Bolter, T. May, J. Soll [1998] FEBS Lett 441: 59–62; G. Schatz [1998] Nature 395: 439–440). We demonstrate that Toc86 corresponds to a native protein of 159 kD in pea (Pisum sativum), designated Toc159. We take advantage of the proteolytic sensitivity of Toc159 to selectively remove its 100-kD cytoplasmic GTPase domain and thereby distinguish its activities from other import components. Proteolysis eliminates detectable binding of preproteins at the chloroplast surface, which is consistent with the proposed role of Toc159 as a receptor component. Remarkably, preprotein translocation across the outer membrane can occur in the absence of the Toc159 cytoplasmic domain, suggesting that binding can be bypassed. Translocation remains sensitive to GTP analogs in the absence of the Toc159 GTP-binding domain, providing evidence that Toc34 plays a key role in the regulation of translocation by GTP.

  • Received August 18, 1999.
  • Accepted November 16, 1999.
View Full Text
PreviousNext
Back to top

Table of Contents

Print
Download PDF
Email Article

Thank you for your interest in spreading the word on Plant Physiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Initial Binding of Preproteins Involving the Toc159 Receptor Can Be Bypassed during Protein Import into Chloroplasts
(Your Name) has sent you a message from Plant Physiology
(Your Name) thought you would like to see the Plant Physiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Initial Binding of Preproteins Involving the Toc159 Receptor Can Be Bypassed during Protein Import into Chloroplasts
Kunhua Chen, Xuejun Chen, Danny J. Schnell
Plant Physiology Mar 2000, 122 (3) 813-822; DOI: 10.1104/pp.122.3.813

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Initial Binding of Preproteins Involving the Toc159 Receptor Can Be Bypassed during Protein Import into Chloroplasts
Kunhua Chen, Xuejun Chen, Danny J. Schnell
Plant Physiology Mar 2000, 122 (3) 813-822; DOI: 10.1104/pp.122.3.813
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • Footnotes
    • LITERATURE CITED
  • Figures & Data
  • Info & Metrics
  • PDF

In this issue

Plant Physiology: 122 (3)
Plant Physiology
Vol. 122, Issue 3
Mar 2000
  • Table of Contents
  • About the Cover
  • Index by author
View this article with LENS

More in this TOC Section

  • Systems Dynamic Modeling of a Guard Cell Cl− Channel Mutant Uncovers an Emergent Homeostatic Network Regulating Stomatal Transpiration
  • The Cell Wall of the Arabidopsis Pollen Tube—Spatial Distribution, Recycling, and Network Formation of Polysaccharides
  • Architecture-Based Multiscale Computational Modeling of Plant Cell Wall Mechanics to Examine the Hydrogen-Bonding Hypothesis of the Cell Wall Network Structure Model
Show more CELL BIOLOGY AND SIGNAL TRANSDUCTION

Similar Articles

Our Content

  • Home
  • Current Issue
  • Plant Physiology Preview
  • Archive
  • Focus Collections
  • Classic Collections
  • The Plant Cell
  • Plant Direct
  • Plantae
  • ASPB

For Authors

  • Instructions
  • Submit a Manuscript
  • Editorial Board and Staff
  • Policies
  • Recognizing our Authors

For Reviewers

  • Instructions
  • Journal Miles
  • Policies

Other Services

  • Permissions
  • Librarian resources
  • Advertise in our journals
  • Alerts
  • RSS Feeds

Copyright © 2021 by The American Society of Plant Biologists

Powered by HighWire