Skip to main content

Main menu

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae

User menu

  • My alerts
  • Log in

Search

  • Advanced search
Plant Physiology
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae
  • My alerts
  • Log in
Plant Physiology

Advanced Search

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Follow plantphysiol on Twitter
  • Visit plantphysiol on Facebook
  • Visit Plantae
Research ArticleCELL BIOLOGY AND SIGNAL TRANSDUCTION
You have accessRestricted Access

Redistribution of Golgi Stacks and Other Organelles during Mitosis and Cytokinesis in Plant Cells

Andreas Nebenführ, Jennifer A. Frohlick, L. Andrew Staehelin
Andreas Nebenführ
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jennifer A. Frohlick
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
L. Andrew Staehelin
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site

Published September 2000. DOI: https://doi.org/10.1104/pp.124.1.135

  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading
  • Copyright © 2000 American Society of Plant Physiologists

Abstract

We have followed the redistribution of Golgi stacks during mitosis and cytokinesis in living tobacco BY-2 suspension culture cells by means of a green fluorescent protein-tagged soybean α-1,2 mannosidase, and correlated the findings to cytoskeletal rearrangements and to the redistribution of endoplasmic reticulum, mitochondria, and plastids. In preparation for cell division, when the general streaming of Golgi stacks stops, about one-third of the peripheral Golgi stacks redistributes to the perinuclear cytoplasm, the phragmosome, thereby reversing the ratio of interior to cortical Golgi from 2:3 to 3:2. During metaphase, approximately 20% of all Golgi stacks aggregate in the immediate vicinity of the mitotic spindle and a similar number becomes concentrated in an equatorial region under the plasma membrane. This latter localization, the “Golgi belt,” accurately predicts the future site of cell division, and thus forms a novel marker for this region after the disassembly of the preprophase band. During telophase and cytokinesis, many Golgi stacks redistribute around the phragmoplast where the cell plate is formed. At the end of cytokinesis, the daughter cells have very similar Golgi stack densities. The sites of preferential Golgi stack localization are specific for this organelle and largely exclude mitochondria and plastids, although some mitochondria can approach the phragmoplast. This segregation of organelles is first observed in metaphase and persists until completion of cytokinesis. Maintenance of the distinct localizations does not depend on intact actin filaments or microtubules, although the mitotic spindle appears to play a major role in organizing the organelle distribution patterns. The redistribution of Golgi stacks during mitosis and cytokinesis is consistent with the hypothesis that Golgi stacks are repositioned to ensure equal partitioning between daughter cells as well as rapid cell plate assembly.

  • Received April 24, 2000.
  • Accepted June 13, 2000.
View Full Text
PreviousNext
Back to top

Table of Contents

Print
Download PDF
Email Article

Thank you for your interest in spreading the word on Plant Physiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Redistribution of Golgi Stacks and Other Organelles during Mitosis and Cytokinesis in Plant Cells
(Your Name) has sent you a message from Plant Physiology
(Your Name) thought you would like to see the Plant Physiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Redistribution of Golgi Stacks and Other Organelles during Mitosis and Cytokinesis in Plant Cells
Andreas Nebenführ, Jennifer A. Frohlick, L. Andrew Staehelin
Plant Physiology Sep 2000, 124 (1) 135-152; DOI: 10.1104/pp.124.1.135

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Redistribution of Golgi Stacks and Other Organelles during Mitosis and Cytokinesis in Plant Cells
Andreas Nebenführ, Jennifer A. Frohlick, L. Andrew Staehelin
Plant Physiology Sep 2000, 124 (1) 135-152; DOI: 10.1104/pp.124.1.135
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • RESULTS
    • DISCUSSION
    • CONCLUSIONS
    • MATERIALS AND METHODS
    • ACKNOWLEDGMENTS
    • Footnotes
    • LITERATURE CITED
  • Figures & Data
  • Info & Metrics
  • PDF

In this issue

Plant Physiology: 124 (1)
Plant Physiology
Vol. 124, Issue 1
Sep 2000
  • Table of Contents
  • About the Cover
  • Index by author
View this article with LENS

More in this TOC Section

  • The Cell Wall of the Arabidopsis Pollen Tube—Spatial Distribution, Recycling, and Network Formation of Polysaccharides
  • Systems Dynamic Modeling of a Guard Cell Cl− Channel Mutant Uncovers an Emergent Homeostatic Network Regulating Stomatal Transpiration
  • Vacuolar CAX1 and CAX3 Influence Auxin Transport in Guard Cells via Regulation of Apoplastic pH
Show more CELL BIOLOGY AND SIGNAL TRANSDUCTION

Similar Articles

Our Content

  • Home
  • Current Issue
  • Plant Physiology Preview
  • Archive
  • Focus Collections
  • Classic Collections
  • The Plant Cell
  • Plant Direct
  • Plantae
  • ASPB

For Authors

  • Instructions
  • Submit a Manuscript
  • Editorial Board and Staff
  • Policies
  • Recognizing our Authors

For Reviewers

  • Instructions
  • Journal Miles
  • Policies

Other Services

  • Permissions
  • Librarian resources
  • Advertise in our journals
  • Alerts
  • RSS Feeds

Copyright © 2021 by The American Society of Plant Biologists

Powered by HighWire