Skip to main content

Main menu

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae

User menu

  • My alerts
  • Log in

Search

  • Advanced search
Plant Physiology
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae
  • My alerts
  • Log in
Plant Physiology

Advanced Search

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Follow plantphysiol on Twitter
  • Visit plantphysiol on Facebook
  • Visit Plantae
Research ArticleBIOCHEMICAL PROCESSES AND MACROMOLECULAR STRUCTURES
You have accessRestricted Access

Analysis of the Expression of CLA1, a Gene That Encodes the 1-Deoxyxylulose 5-Phosphate Synthase of the 2-C-Methyl-d-Erythritol-4-Phosphate Pathway in Arabidopsis

Juan M. Estévez, Araceli Cantero, Cynthia Romero, Hiroshi Kawaide, Luis F. Jiménez, Tomohisa Kuzuyama, Haruo Seto, Yuji Kamiya, Patricia León
Juan M. Estévez
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Araceli Cantero
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Cynthia Romero
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Hiroshi Kawaide
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Luis F. Jiménez
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Tomohisa Kuzuyama
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Haruo Seto
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Yuji Kamiya
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Patricia León
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site

Published September 2000. DOI: https://doi.org/10.1104/pp.124.1.95

  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading
  • Copyright © 2000 American Society of Plant Physiologists

Abstract

The discovery of the 2-C-methyl-d-erythritol-4-phosphate pathway for the biosynthesis of isoprenoids raises the important question of the nature and regulation of the enzymes involved in this pathway.CLA1, a gene previously isolated from Arabidopsis, encodes the first enzyme of the 2-C-methyl-d-erythritol-4-phosphate pathway, 1-deoxy-d-xylulose-5-phosphate synthase. We demonstrate this enzyme activity by complementation of the cla1-1mutant phenotype and by direct enzymatic assays. Based on mRNA and protein expression patterns this enzyme is expressed mainly in developing photosynthetic and non-photosynthetic tissues. The β-glucuronidase expression pattern driven from theCLA1 gene regulatory region supports the northern and protein data while also showing that this gene has some level of expression in most tissues of the plant. A mutation in theCLA1 gene interferes with the normal development of chloroplasts and etioplasts, but does not seem to affect amyloplast structure. Microscopic analysis also shows a pleiotropic effect of theCLA1 gene mutation in mesophyll tissue formation.

  • Received January 5, 2000.
  • Accepted May 9, 2000.
View Full Text
PreviousNext
Back to top

Table of Contents

Print
Download PDF
Email Article

Thank you for your interest in spreading the word on Plant Physiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Analysis of the Expression of CLA1, a Gene That Encodes the 1-Deoxyxylulose 5-Phosphate Synthase of the 2-C-Methyl-d-Erythritol-4-Phosphate Pathway in Arabidopsis
(Your Name) has sent you a message from Plant Physiology
(Your Name) thought you would like to see the Plant Physiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Analysis of the Expression of CLA1, a Gene That Encodes the 1-Deoxyxylulose 5-Phosphate Synthase of the 2-C-Methyl-d-Erythritol-4-Phosphate Pathway in Arabidopsis
Juan M. Estévez, Araceli Cantero, Cynthia Romero, Hiroshi Kawaide, Luis F. Jiménez, Tomohisa Kuzuyama, Haruo Seto, Yuji Kamiya, Patricia León
Plant Physiology Sep 2000, 124 (1) 95-104; DOI: 10.1104/pp.124.1.95

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Analysis of the Expression of CLA1, a Gene That Encodes the 1-Deoxyxylulose 5-Phosphate Synthase of the 2-C-Methyl-d-Erythritol-4-Phosphate Pathway in Arabidopsis
Juan M. Estévez, Araceli Cantero, Cynthia Romero, Hiroshi Kawaide, Luis F. Jiménez, Tomohisa Kuzuyama, Haruo Seto, Yuji Kamiya, Patricia León
Plant Physiology Sep 2000, 124 (1) 95-104; DOI: 10.1104/pp.124.1.95
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • RESULTS
    • DISCUSSION
    • MATERIALS AND METHODS
    • ACKNOWLEDGMENTS
    • Footnotes
    • LITERATURE CITED
  • Figures & Data
  • Info & Metrics
  • PDF

In this issue

Plant Physiology: 124 (1)
Plant Physiology
Vol. 124, Issue 1
Sep 2000
  • Table of Contents
  • About the Cover
  • Index by author
View this article with LENS

More in this TOC Section

  • Decreasing the Mitochondrial Synthesis of Malate in Potato Tubers Does Not Affect Plastidial Starch Synthesis, Suggesting That the Physiological Regulation of ADPglucose Pyrophosphorylase Is Context Dependent
  • UDP-Glycosyltransferases from the UGT73C Subfamily in Barbarea vulgaris Catalyze Sapogenin 3-O-Glucosylation in Saponin-Mediated Insect Resistance
  • Tie-dyed2 Encodes a Callose Synthase That Functions in Vein Development and Affects Symplastic Trafficking within the Phloem of Maize Leaves
Show more BIOCHEMICAL PROCESSES AND MACROMOLECULAR STRUCTURES

Similar Articles

Our Content

  • Home
  • Current Issue
  • Plant Physiology Preview
  • Archive
  • Focus Collections
  • Classic Collections
  • The Plant Cell
  • Plant Direct
  • Plantae
  • ASPB

For Authors

  • Instructions
  • Submit a Manuscript
  • Editorial Board and Staff
  • Policies
  • Recognizing our Authors

For Reviewers

  • Instructions
  • Journal Miles
  • Policies

Other Services

  • Permissions
  • Librarian resources
  • Advertise in our journals
  • Alerts
  • RSS Feeds

Copyright © 2021 by The American Society of Plant Biologists

Powered by HighWire