Skip to main content

Main menu

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae

User menu

  • My alerts
  • Log in

Search

  • Advanced search
Plant Physiology
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae
  • My alerts
  • Log in
Plant Physiology

Advanced Search

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Follow plantphysiol on Twitter
  • Visit plantphysiol on Facebook
  • Visit Plantae
Research ArticleDEVELOPMENT AND HORMONE ACTION
You have accessRestricted Access

Hormonal Interactions in the Control of Arabidopsis Hypocotyl Elongation

Clare E. Collett, Nicholas P. Harberd, Ottoline Leyser
Clare E. Collett
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Nicholas P. Harberd
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ottoline Leyser
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site

Published October 2000. DOI: https://doi.org/10.1104/pp.124.2.553

  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading
  • Copyright © 2000 American Society of Plant Physiologists

Abstract

The Arabidopsis hypocotyl, together with hormone mutants and chemical inhibitors, was used to study the role of auxin in cell elongation and its possible interactions with ethylene and gibberellin. When wild-type Arabidopsis seedlings were grown on media containing a range of auxin concentrations, hypocotyl growth was inhibited. However, when axr1-12 and 35S-iaaL(which have reduced auxin response and levels, respectively) were grown in the same conditions, auxin was able to promote hypocotyl growth. In contrast, auxin does not promote hypocotyl growth ofaxr3-1, which has phenotypes that suggest an enhanced auxin response. These results are consistent with the hypothesis that auxin levels in the wild-type hypocotyl are optimal for elongation and that additional auxin is inhibitory. When ethylene responses were reduced using either the ethylene-resistant mutantetr1 or aminoethoxyvinylglycine, an inhibitor of ethylene synthesis, auxin responses were unchanged, indicating that auxin does not inhibit hypocotyl elongation through ethylene. To test for interactions between auxin and gibberellin, auxin mutants were grown on media containing gibberellin and gibberellin mutants were grown on media containing auxin. The responses were found to be the same as wild-type Arabidopsis seedlings in all cases. In addition, 1 μm of the auxin transport inhibitor 1-naphthylphthalmic acid does not alter the response of wild-type seedlings to gibberellin. Double mutants were made between gibberellin and auxin mutants and the phenotypes of these appear additive. These results indicate that auxin and gibberellin are acting independently in hypocotyl elongation. Thus auxin, ethylene, and gibberellin each regulate hypocotyl elongation independently.

  • Received February 25, 2000.
  • Accepted May 30, 2000.
View Full Text
PreviousNext
Back to top

Table of Contents

Print
Download PDF
Email Article

Thank you for your interest in spreading the word on Plant Physiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Hormonal Interactions in the Control of Arabidopsis Hypocotyl Elongation
(Your Name) has sent you a message from Plant Physiology
(Your Name) thought you would like to see the Plant Physiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Hormonal Interactions in the Control of Arabidopsis Hypocotyl Elongation
Clare E. Collett, Nicholas P. Harberd, Ottoline Leyser
Plant Physiology Oct 2000, 124 (2) 553-562; DOI: 10.1104/pp.124.2.553

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Hormonal Interactions in the Control of Arabidopsis Hypocotyl Elongation
Clare E. Collett, Nicholas P. Harberd, Ottoline Leyser
Plant Physiology Oct 2000, 124 (2) 553-562; DOI: 10.1104/pp.124.2.553
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • RESULTS
    • DISCUSSION
    • MATERIALS AND METHODS
    • ACKNOWLEDGMENTS
    • Footnotes
    • LITERATURE CITED
  • Figures & Data
  • Info & Metrics
  • PDF

In this issue

Plant Physiology: 124 (2)
Plant Physiology
Vol. 124, Issue 2
Oct 2000
  • Table of Contents
  • About the Cover
  • Index by author
View this article with LENS

More in this TOC Section

  • An Endogenous Carbon-Sensing Pathway Triggers Increased Auxin Flux and Hypocotyl Elongation
  • Differential Control of Ethylene Responses by GREEN-RIPE and GREEN-RIPE LIKE1 Provides Evidence for Distinct Ethylene Signaling Modules in Tomato
  • The AINTEGUMENTA LIKE1 Homeotic Transcription Factor PtAIL1 Controls the Formation of Adventitious Root Primordia in Poplar
Show more DEVELOPMENT AND HORMONE ACTION

Similar Articles

Our Content

  • Home
  • Current Issue
  • Plant Physiology Preview
  • Archive
  • Focus Collections
  • Classic Collections
  • The Plant Cell
  • Plant Direct
  • Plantae
  • ASPB

For Authors

  • Instructions
  • Submit a Manuscript
  • Editorial Board and Staff
  • Policies
  • Recognizing our Authors

For Reviewers

  • Instructions
  • Journal Miles
  • Policies

Other Services

  • Permissions
  • Librarian resources
  • Advertise in our journals
  • Alerts
  • RSS Feeds

Copyright © 2021 by The American Society of Plant Biologists

Powered by HighWire