Skip to main content

Main menu

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae

User menu

  • My alerts
  • Log in

Search

  • Advanced search
Plant Physiology
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae
  • My alerts
  • Log in
Plant Physiology

Advanced Search

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Follow plantphysiol on Twitter
  • Visit plantphysiol on Facebook
  • Visit Plantae
Research ArticleCELL BIOLOGY AND SIGNAL TRANSDUCTION
You have accessRestricted Access

Mutants at the Slender1 Locus of Barley cv Himalaya. Molecular and Physiological Characterization

Peter Michael Chandler, Annie Marion-Poll, Marc Ellis, Frank Gubler
Peter Michael Chandler
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Annie Marion-Poll
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Marc Ellis
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Frank Gubler
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site

Published May 2002. DOI: https://doi.org/10.1104/pp.010917

  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading
  • Copyright © 2002 American Society of Plant Physiologists

Abstract

A dominant dwarf mutant of barley (Hordeum vulgare) that resembles dominant gibberellin (GA) “-insensitive” or “-nonresponsive” mutants in other species is described. α-Amylase production by endosperm half-grains of the mutant required GA3 at concentrations about 100 times that of the WT. The mutant showed only a slight growth response to GA3, even at very high concentrations. However, when additionally dwarfed, growth rate responded to GA3over the normal concentration range, although only back to the original (dwarf) elongation rate. Genetic studies indicated that the dominant dwarf locus was either closely linked or identical to theSln1 (Slender1) locus. A barley sequence related to Arabidopsis GAI/RGA was isolated, and shown to represent the Sln1 locus by the analysis ofsln1 mutants. The dominant dwarf mutant was also altered in this sequence, indicating that it too is an allele atSln1. Thus, mutations at Sln1 generate plants of radically different phenotypes; either dwarfs that are largely dominant and GA “-insensitive/-nonresponsive,” or the recessive slender types in which GA responses appear to be constitutive. Immunoblotting studies showed that in growing leaves, SLN1 protein localized almost exclusively to the leaf elongation zone. In mutants at the Sln1 locus, there were differences in both the abundance and distribution of SLN1 protein, and large changes in the amounts of bioactive GAs, and of their metabolic precursors and catabolites. These results suggest that there are dynamic interactions between SLN1 protein and GA content in determining leaf elongation rate.

  • Received October 9, 2001.
  • Revision received November 15, 2001.
  • Accepted January 20, 2002.
View Full Text
PreviousNext
Back to top

Table of Contents

Print
Download PDF
Email Article

Thank you for your interest in spreading the word on Plant Physiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Mutants at the Slender1 Locus of Barley cv Himalaya. Molecular and Physiological Characterization
(Your Name) has sent you a message from Plant Physiology
(Your Name) thought you would like to see the Plant Physiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Mutants at the Slender1 Locus of Barley cv Himalaya. Molecular and Physiological Characterization
Peter Michael Chandler, Annie Marion-Poll, Marc Ellis, Frank Gubler
Plant Physiology May 2002, 129 (1) 181-190; DOI: 10.1104/pp.010917

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Mutants at the Slender1 Locus of Barley cv Himalaya. Molecular and Physiological Characterization
Peter Michael Chandler, Annie Marion-Poll, Marc Ellis, Frank Gubler
Plant Physiology May 2002, 129 (1) 181-190; DOI: 10.1104/pp.010917
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • RESULTS
    • DISCUSSION
    • MATERIALS AND METHODS
    • ACKNOWLEDGMENTS
    • Footnotes
    • LITERATURE CITED
  • Figures & Data
  • Info & Metrics
  • PDF

In this issue

Plant Physiology: 129 (1)
Plant Physiology
Vol. 129, Issue 1
May 2002
  • Table of Contents
  • About the Cover
  • Index by author
View this article with LENS

More in this TOC Section

  • The Cell Wall of the Arabidopsis Pollen Tube—Spatial Distribution, Recycling, and Network Formation of Polysaccharides
  • Systems Dynamic Modeling of a Guard Cell Cl− Channel Mutant Uncovers an Emergent Homeostatic Network Regulating Stomatal Transpiration
  • Architecture-Based Multiscale Computational Modeling of Plant Cell Wall Mechanics to Examine the Hydrogen-Bonding Hypothesis of the Cell Wall Network Structure Model
Show more CELL BIOLOGY AND SIGNAL TRANSDUCTION

Similar Articles

Our Content

  • Home
  • Current Issue
  • Plant Physiology Preview
  • Archive
  • Focus Collections
  • Classic Collections
  • The Plant Cell
  • Plant Direct
  • Plantae
  • ASPB

For Authors

  • Instructions
  • Submit a Manuscript
  • Editorial Board and Staff
  • Policies
  • Recognizing our Authors

For Reviewers

  • Instructions
  • Journal Miles
  • Policies

Other Services

  • Permissions
  • Librarian resources
  • Advertise in our journals
  • Alerts
  • RSS Feeds

Copyright © 2021 by The American Society of Plant Biologists

Powered by HighWire