Skip to main content

Main menu

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae

User menu

  • My alerts
  • Log in

Search

  • Advanced search
Plant Physiology
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae
  • My alerts
  • Log in
Plant Physiology

Advanced Search

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Follow plantphysiol on Twitter
  • Visit plantphysiol on Facebook
  • Visit Plantae
Research ArticleCELL BIOLOGY AND SIGNAL TRANSDUCTION
You have accessRestricted Access

Gibberellin Signaling in Barley Aleurone Cells. Control of SLN1 and GAMYB Expression

Frank Gubler, Peter Michael Chandler, Rosemary G. White, Danny J. Llewellyn, John V. Jacobsen
Frank Gubler
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Peter Michael Chandler
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Rosemary G. White
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Danny J. Llewellyn
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
John V. Jacobsen
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site

Published May 2002. DOI: https://doi.org/10.1104/pp.010918

  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading
  • Copyright © 2002 American Society of Plant Physiologists

Abstract

We have previously identified GAMYB, a gibberellin (GA)-regulated transcriptional activator of α-amylase gene expression, in aleurone cells of barley (Hordeum vulgare). To examine the regulation of GAMYB expression, we describe the use of nuclear run-on experiments to show that GA causes a 2-fold increase in the rate of GAMYB transcription and that the effect of GA can be blocked by abscisic acid (ABA). To identify GA-signaling components that regulate GAMYB expression, we examined the role of SLN1, a negative regulator of GA signaling in barley. SLN1, which is the product of the Sln1(Slender1) locus, is necessary for repression of GAMYB in barley aleurone cells. The activity of SLN1 in aleurone cells is regulated posttranslationally. SLN1 protein levels decline rapidly in response to GA before any increase in GAMYB levels. Green fluorescent protein-SLN1 fusion protein was targeted to the nucleus of aleurone protoplasts and disappeared in response to GA. Evidence from a dominant dwarf mutant at Sln1, and from thegse1 mutant (that affects GA “sensitivity”), indicates that GA acts by regulating SLN1 degradation and not translation. Mutation of the DELLA region of SLN1 results in increased protein stability in GA-treated layers, indicating that the DELLA region plays an important role in GA-induced degradation of SLN1. Unlike GA, ABA had no effect on SLN1 stability, confirming that ABA acts downstream of SLN1 to block GA signaling.

  • Received October 9, 2001.
  • Revision received November 15, 2001.
  • Accepted January 20, 2002.
View Full Text
PreviousNext
Back to top

Table of Contents

Print
Download PDF
Email Article

Thank you for your interest in spreading the word on Plant Physiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Gibberellin Signaling in Barley Aleurone Cells. Control of SLN1 and GAMYB Expression
(Your Name) has sent you a message from Plant Physiology
(Your Name) thought you would like to see the Plant Physiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Gibberellin Signaling in Barley Aleurone Cells. Control of SLN1 and GAMYB Expression
Frank Gubler, Peter Michael Chandler, Rosemary G. White, Danny J. Llewellyn, John V. Jacobsen
Plant Physiology May 2002, 129 (1) 191-200; DOI: 10.1104/pp.010918

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Gibberellin Signaling in Barley Aleurone Cells. Control of SLN1 and GAMYB Expression
Frank Gubler, Peter Michael Chandler, Rosemary G. White, Danny J. Llewellyn, John V. Jacobsen
Plant Physiology May 2002, 129 (1) 191-200; DOI: 10.1104/pp.010918
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • RESULTS
    • DISCUSSION
    • MATERIALS AND METHODS
    • ACKNOWLEDGMENTS
    • Footnotes
    • LITERATURE CITED
  • Figures & Data
  • Info & Metrics
  • PDF

In this issue

Plant Physiology: 129 (1)
Plant Physiology
Vol. 129, Issue 1
May 2002
  • Table of Contents
  • About the Cover
  • Index by author
View this article with LENS

More in this TOC Section

  • The Cell Wall of the Arabidopsis Pollen Tube—Spatial Distribution, Recycling, and Network Formation of Polysaccharides
  • Systems Dynamic Modeling of a Guard Cell Cl− Channel Mutant Uncovers an Emergent Homeostatic Network Regulating Stomatal Transpiration
  • Vacuolar CAX1 and CAX3 Influence Auxin Transport in Guard Cells via Regulation of Apoplastic pH
Show more CELL BIOLOGY AND SIGNAL TRANSDUCTION

Similar Articles

Our Content

  • Home
  • Current Issue
  • Plant Physiology Preview
  • Archive
  • Focus Collections
  • Classic Collections
  • The Plant Cell
  • Plant Direct
  • Plantae
  • ASPB

For Authors

  • Instructions
  • Submit a Manuscript
  • Editorial Board and Staff
  • Policies
  • Recognizing our Authors

For Reviewers

  • Instructions
  • Journal Miles
  • Policies

Other Services

  • Permissions
  • Librarian resources
  • Advertise in our journals
  • Alerts
  • RSS Feeds

Copyright © 2021 by The American Society of Plant Biologists

Powered by HighWire