Skip to main content

Main menu

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae

User menu

  • My alerts
  • Log in

Search

  • Advanced search
Plant Physiology
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae
  • My alerts
  • Log in
Plant Physiology

Advanced Search

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Follow plantphysiol on Twitter
  • Visit plantphysiol on Facebook
  • Visit Plantae
Research ArticleGENETICS, GENOMICS, AND MOLECULAR EVOLUTION
You have accessRestricted Access

Transcriptional Profiling Reveals Novel Interactions between Wounding, Pathogen, Abiotic Stress, and Hormonal Responses in Arabidopsis

Yong Hwa Cheong, Hur-Song Chang, Rajeev Gupta, Xun Wang, Tong Zhu, Sheng Luan
Yong Hwa Cheong
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Hur-Song Chang
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Rajeev Gupta
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Xun Wang
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Tong Zhu
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Sheng Luan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site

Published June 2002. DOI: https://doi.org/10.1104/pp.002857

  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading
  • Copyright © 2002 American Society of Plant Physiologists

Abstract

Mechanical wounding not only damages plant tissues, but also provides pathways for pathogen invasion. To understand plant responses to wounding at a genomic level, we have surveyed the transcriptional response of 8,200 genes in Arabidopsis plants. Approximately 8% of these genes were altered by wounding at steady-state mRNA levels. Studies of expression patterns of these genes provide new information on the interactions between wounding and other signals, including pathogen attack, abiotic stress factors, and plant hormones. For example, a number of wound-responsive genes encode proteins involved in pathogen response. These include signaling molecules for the pathogen resistance pathway and enzymes required for cell wall modification and secondary metabolism. Many osmotic stress- and heat shock-regulated genes were highly responsive to wounding. Although a number of genes involved in ethylene, jasmonic acid, and abscisic acid pathways were activated, many in auxin responses were suppressed by wounding. These results further dissected the nature of mechanical wounding as a stress signal and identified new genes that may play a role in wounding and other signal transduction pathways.

  • Received January 17, 2002.
  • Revision received March 12, 2002.
  • Accepted March 14, 2002.
View Full Text
PreviousNext
Back to top

Table of Contents

Print
Download PDF
Email Article

Thank you for your interest in spreading the word on Plant Physiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Transcriptional Profiling Reveals Novel Interactions between Wounding, Pathogen, Abiotic Stress, and Hormonal Responses in Arabidopsis
(Your Name) has sent you a message from Plant Physiology
(Your Name) thought you would like to see the Plant Physiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Transcriptional Profiling Reveals Novel Interactions between Wounding, Pathogen, Abiotic Stress, and Hormonal Responses in Arabidopsis
Yong Hwa Cheong, Hur-Song Chang, Rajeev Gupta, Xun Wang, Tong Zhu, Sheng Luan
Plant Physiology Jun 2002, 129 (2) 661-677; DOI: 10.1104/pp.002857

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Transcriptional Profiling Reveals Novel Interactions between Wounding, Pathogen, Abiotic Stress, and Hormonal Responses in Arabidopsis
Yong Hwa Cheong, Hur-Song Chang, Rajeev Gupta, Xun Wang, Tong Zhu, Sheng Luan
Plant Physiology Jun 2002, 129 (2) 661-677; DOI: 10.1104/pp.002857
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • RESULTS AND DISCUSSION
    • MATERIALS AND METHODS
    • ACKNOWLEDGMENTS
    • Footnotes
    • LITERATURE CITED
  • Figures & Data
  • Info & Metrics
  • PDF

In this issue

Plant Physiology: 129 (2)
Plant Physiology
Vol. 129, Issue 2
Jun 2002
  • Table of Contents
  • About the Cover
  • Index by author
View this article with LENS

More in this TOC Section

  • Natural Variation for Seed Longevity and Seed Dormancy Are Negatively Correlated in Arabidopsis
  • Genomics and Localization of the Arabidopsis DHHC-Cysteine-Rich Domain S-Acyltransferase Protein Family
  • Allelic Variation in Paralogs of GDP-l-Galactose Phosphorylase Is a Major Determinant of Vitamin C Concentrations in Apple Fruit
Show more Genetics, Genomics, and Molecular Evolution

Similar Articles

Our Content

  • Home
  • Current Issue
  • Plant Physiology Preview
  • Archive
  • Focus Collections
  • Classic Collections
  • The Plant Cell
  • Plant Direct
  • Plantae
  • ASPB

For Authors

  • Instructions
  • Submit a Manuscript
  • Editorial Board and Staff
  • Policies
  • Recognizing our Authors

For Reviewers

  • Instructions
  • Journal Miles
  • Policies

Other Services

  • Permissions
  • Librarian resources
  • Advertise in our journals
  • Alerts
  • RSS Feeds

Copyright © 2021 by The American Society of Plant Biologists

Powered by HighWire