Skip to main content

Main menu

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae

User menu

  • My alerts
  • Log in

Search

  • Advanced search
Plant Physiology
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae
  • My alerts
  • Log in
Plant Physiology

Advanced Search

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Follow plantphysiol on Twitter
  • Visit plantphysiol on Facebook
  • Visit Plantae
Research ArticleENVIRONMENTAL STRESS AND ADAPTATION
You have accessRestricted Access

Freezing Sensitivity in the sfr4 Mutant of Arabidopsis Is Due to Low Sugar Content and Is Manifested by Loss of Osmotic Responsiveness

Matsuo Uemura, Gareth Warren, Peter L. Steponkus
Matsuo Uemura
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Gareth Warren
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Peter L. Steponkus
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site

Published April 2003. DOI: https://doi.org/10.1104/pp.102.013227

  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading
  • Copyright © 2003 American Society of Plant Biologists

Abstract

Protoplasts were tested to determine whether the freezing sensitivity of the sfr4 (sensitive to freezing) mutant of Arabidopsis was due to the mutant's deficiency in soluble sugars after cold acclimation. When grown under nonacclimated conditions,sfr4 protoplasts possessed freezing tolerance similar to that of wild type, with the temperature at which 50% of protoplasts are injured (LT50) of −4.5°C. In both wild-type andsfr4 protoplasts, expansion-induced lysis was the predominant lesion between −2°C and −4°C, but its incidence was low (approximately 10%); below −5°C, loss of osmotic responsiveness (LOR) was the predominant lesion. After cold acclimation, the LT50 was decreased to only −5.6°C forsfr4 protoplasts, compared with −9.1°C for wild-type protoplasts. Although expansion-induced lysis was precluded in both types of protoplasts, the sfr4 protoplasts remained susceptible to LOR. After incubation of seedlings in Suc solution in the dark at 2°C, freezing tolerance and the incidence of freeze-induced lesions in sfr4 protoplasts were examined. The freezing tolerance of isolated protoplasts (LT50 of −9°C) and the incidence of LOR were now similar for wild type and sfr4. These results indicate that the freezing sensitivity of cold-acclimated sfr4 is due to its continued susceptibility to LOR (associated with lyotropic formation of the hexagonal II phase) and associated with the low sugar content of its cells.

  • Received August 16, 2002.
  • Revision received September 7, 2002.
  • Accepted December 31, 2002.
View Full Text
PreviousNext
Back to top

Table of Contents

Print
Download PDF
Email Article

Thank you for your interest in spreading the word on Plant Physiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Freezing Sensitivity in the sfr4 Mutant of Arabidopsis Is Due to Low Sugar Content and Is Manifested by Loss of Osmotic Responsiveness
(Your Name) has sent you a message from Plant Physiology
(Your Name) thought you would like to see the Plant Physiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Freezing Sensitivity in the sfr4 Mutant of Arabidopsis Is Due to Low Sugar Content and Is Manifested by Loss of Osmotic Responsiveness
Matsuo Uemura, Gareth Warren, Peter L. Steponkus
Plant Physiology Apr 2003, 131 (4) 1800-1807; DOI: 10.1104/pp.102.013227

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Freezing Sensitivity in the sfr4 Mutant of Arabidopsis Is Due to Low Sugar Content and Is Manifested by Loss of Osmotic Responsiveness
Matsuo Uemura, Gareth Warren, Peter L. Steponkus
Plant Physiology Apr 2003, 131 (4) 1800-1807; DOI: 10.1104/pp.102.013227
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • RESULTS
    • DISCUSSION
    • MATERIALS AND METHODS
    • Footnotes
    • LITERATURE CITED
  • Figures & Data
  • Info & Metrics
  • PDF

In this issue

Plant Physiology: 131 (4)
Plant Physiology
Vol. 131, Issue 4
Apr 2003
  • Table of Contents
  • About the Cover
  • Index by author
View this article with LENS

More in this TOC Section

  • Submergence-Induced Morphological, Anatomical, and Biochemical Responses in a Terrestrial Species Affect Gas Diffusion Resistance and Photosynthetic Performance
  • The Root Tip and Accelerating Region Suppress Elongation of the Decelerating Region without any Effects on Cell Turgor in Primary Roots of Maize under Water Stress
  • Effects of Water Stress on Respiration in Soybean Leaves
Show more ENVIRONMENTAL STRESS AND ADAPTATION

Similar Articles

Our Content

  • Home
  • Current Issue
  • Plant Physiology Preview
  • Archive
  • Focus Collections
  • Classic Collections
  • The Plant Cell
  • Plant Direct
  • Plantae
  • ASPB

For Authors

  • Instructions
  • Submit a Manuscript
  • Editorial Board and Staff
  • Policies
  • Recognizing our Authors

For Reviewers

  • Instructions
  • Journal Miles
  • Policies

Other Services

  • Permissions
  • Librarian resources
  • Advertise in our journals
  • Alerts
  • RSS Feeds

Copyright © 2021 by The American Society of Plant Biologists

Powered by HighWire