Skip to main content

Main menu

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae

User menu

  • My alerts
  • Log in

Search

  • Advanced search
Plant Physiology
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae
  • My alerts
  • Log in
Plant Physiology

Advanced Search

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Follow plantphysiol on Twitter
  • Visit plantphysiol on Facebook
  • Visit Plantae
Research ArticleResearch ArticleF
You have accessRestricted Access

Characterization of a Novel Non-Constitutive Photomorphogenic cop1 Allele

Monika Dieterle, Claudia Büche, Eberhard Schäfer, Thomas Kretsch
Monika Dieterle
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Claudia Büche
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Eberhard Schäfer
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Thomas Kretsch
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site

Published December 2003. DOI: https://doi.org/10.1104/pp.103.028654

  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading
  • © 2003 American Society of Plant Biologists

Abstract

A specific light program consisting of multiple treatments with alternating red and far-red light pulses was used to isolate mutants in phytochrome A-dependent signal transduction in Arabidopsis seedlings. Because of their phenotype, the mutants were called eid (empfindlicher im dunkelroten Licht, which means hypersensitive in far-red light). One of the isolated mutants, eid6, is a novel recessive allele of the COP1 gene (constitutive photomorphogenic 1) that carries an amino acid transition in a conserved histidine residue of the RING finger domain. Mutant seedlings exhibited an extreme hypersensitivity towards all tested light qualities, but in contrast to known cop1 alleles, no constitutive photomorphogenic phenotype was detectable in darkness. Thus, the novel cop1eid6 allele seems to encode for a protein whose remaining activity is sufficient for the suppression of photomorphogenesis in dark-grown plants. In adult cop1eid6 plants, the development of the Cop1 phenotype is dominated by phytochrome B. Comparison of the phenotype of the novel cop1eid6 and the weak cop1-4 allele under continuous far-red light indicates that the RING finger and coiled-coil domains of COP1 are sufficient for some specific regulatory function in phytochrome A-dependent high irradiance responses.

  • Received June 17, 2003.
  • Revised July 11, 2003.
  • Accepted August 1, 2003.
  • Published November 6, 2003.
View Full Text
PreviousNext
Back to top

Table of Contents

Print
Download PDF
Email Article

Thank you for your interest in spreading the word on Plant Physiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Characterization of a Novel Non-Constitutive Photomorphogenic cop1 Allele
(Your Name) has sent you a message from Plant Physiology
(Your Name) thought you would like to see the Plant Physiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Characterization of a Novel Non-Constitutive Photomorphogenic cop1 Allele
Monika Dieterle, Claudia Büche, Eberhard Schäfer, Thomas Kretsch
Plant Physiology Dec 2003, 133 (4) 1557-1564; DOI: 10.1104/pp.103.028654

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Characterization of a Novel Non-Constitutive Photomorphogenic cop1 Allele
Monika Dieterle, Claudia Büche, Eberhard Schäfer, Thomas Kretsch
Plant Physiology Dec 2003, 133 (4) 1557-1564; DOI: 10.1104/pp.103.028654
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • RESULTS
    • DISCUSSION
    • MATERIALS AND METHODS
    • Acknowledgments
    • Footnotes
    • LITERATURE CITED
  • Figures & Data
  • Info & Metrics
  • PDF

In this issue

Plant Physiology: 133 (4)
Plant Physiology
Vol. 133, Issue 4
Dec 2003
  • Table of Contents
  • About the Cover
  • Index by author
View this article with LENS

More in this TOC Section

  • Ubiquitination of S4-RNase by S-LOCUS F-BOX LIKE2 Contributes to Self-Compatibility of Sweet Cherry ‘Lapins’
  • Kinase Partner Protein Plays a Key Role in Controlling the Speed and Shape of Pollen Tube Growth in Tomato
  • The K+ and NO3− Interaction Mediated by NITRATE TRANSPORTER1.1 Ensures Better Plant Growth under K+-Limiting Conditions
Show more RESEARCH ARTICLES

Similar Articles

Our Content

  • Home
  • Current Issue
  • Plant Physiology Preview
  • Archive
  • Focus Collections
  • Classic Collections
  • The Plant Cell
  • Plant Direct
  • Plantae
  • ASPB

For Authors

  • Instructions
  • Submit a Manuscript
  • Editorial Board and Staff
  • Policies
  • Recognizing our Authors

For Reviewers

  • Instructions
  • Journal Miles
  • Policies

Other Services

  • Permissions
  • Librarian resources
  • Advertise in our journals
  • Alerts
  • RSS Feeds

Copyright © 2021 by The American Society of Plant Biologists

Powered by HighWire