Skip to main content

Main menu

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae

User menu

  • My alerts
  • Log in

Search

  • Advanced search
Plant Physiology
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae
  • My alerts
  • Log in
Plant Physiology

Advanced Search

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Follow plantphysiol on Twitter
  • Visit plantphysiol on Facebook
  • Visit Plantae
Research ArticleDEVELOPMENT AND HORMONE ACTION
You have accessRestricted Access

The Xylem and Phloem Transcriptomes from Secondary Tissues of the Arabidopsis Root-Hypocotyl

Chengsong Zhao, Johanna C. Craig, H. Earl Petzold, Allan W. Dickerman, Eric P. Beers
Chengsong Zhao
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Johanna C. Craig
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
H. Earl Petzold
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Allan W. Dickerman
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Eric P. Beers
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site

Published June 2005. DOI: https://doi.org/10.1104/pp.105.060202

  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading
  • © 2005 American Society of Plant Biologists

Abstract

The growth of secondary xylem and phloem depends on the division of cells in the vascular cambium and results in an increase in the diameter of the root and stem. Very little is known about the genetic mechanisms that control cambial activity and the differentiation of secondary xylem and phloem cell types. To begin to identify new genes required for vascular cell differentiation and function, we performed genome-wide expression profiling of xylem and phloem-cambium isolated from the root-hypocotyl of Arabidopsis (Arabidopsis thaliana). Gene expression in the remaining nonvascular tissue was also profiled. From these transcript profiles, we assembled three sets of genes with expression significantly biased toward xylem, phloem-cambium, or nonvascular tissue. We also assembled three two-tissue sets of genes with expression significantly biased toward xylem/phloem-cambium, xylem/nonvascular, or phloem-cambium/nonvascular tissues. Localizations predicted by transcript profiles were supported by results from promoter-reporter and reverse transcription-polymerase chain reaction experiments with nine xylem- or phloem-cambium-biased genes. An analysis of the members of the phloem-cambium gene set suggested that some genes involved in regulating primary meristems are also regulators of the cambium. Secondary phloem was implicated in the synthesis of auxin, glucosinolates, cytokinin, and gibberellic acid. Transcript profiles also supported the importance of class III HD ZIP and KANADI transcription factors as regulators of radial patterning during secondary growth, and identified several members of the G2-like, NAC, AP2, MADS, and MYB transcription factor families that may play roles as regulators of xylem or phloem cell differentiation and activity.

  • Received January 26, 2005.
  • Revised April 12, 2005.
  • Accepted April 13, 2005.
  • Published May 27, 2005.
View Full Text
PreviousNext
Back to top

Table of Contents

Print
Download PDF
Email Article

Thank you for your interest in spreading the word on Plant Physiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
The Xylem and Phloem Transcriptomes from Secondary Tissues of the Arabidopsis Root-Hypocotyl
(Your Name) has sent you a message from Plant Physiology
(Your Name) thought you would like to see the Plant Physiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
The Xylem and Phloem Transcriptomes from Secondary Tissues of the Arabidopsis Root-Hypocotyl
Chengsong Zhao, Johanna C. Craig, H. Earl Petzold, Allan W. Dickerman, Eric P. Beers
Plant Physiology Jun 2005, 138 (2) 803-818; DOI: 10.1104/pp.105.060202

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
The Xylem and Phloem Transcriptomes from Secondary Tissues of the Arabidopsis Root-Hypocotyl
Chengsong Zhao, Johanna C. Craig, H. Earl Petzold, Allan W. Dickerman, Eric P. Beers
Plant Physiology Jun 2005, 138 (2) 803-818; DOI: 10.1104/pp.105.060202
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • RESULTS
    • DISCUSSION
    • CONCLUSION
    • MATERIALS AND METHODS
    • Acknowledgments
    • Footnotes
    • LITERATURE CITED
  • Figures & Data
  • Info & Metrics
  • PDF

In this issue

Plant Physiology: 138 (2)
Plant Physiology
Vol. 138, Issue 2
June 2005
  • Table of Contents
  • About the Cover
  • Index by author
View this article with LENS

More in this TOC Section

  • An Endogenous Carbon-Sensing Pathway Triggers Increased Auxin Flux and Hypocotyl Elongation
  • Differential Control of Ethylene Responses by GREEN-RIPE and GREEN-RIPE LIKE1 Provides Evidence for Distinct Ethylene Signaling Modules in Tomato
  • The AINTEGUMENTA LIKE1 Homeotic Transcription Factor PtAIL1 Controls the Formation of Adventitious Root Primordia in Poplar
Show more DEVELOPMENT AND HORMONE ACTION

Similar Articles

Subjects

  • Biology of Transpiration

Our Content

  • Home
  • Current Issue
  • Plant Physiology Preview
  • Archive
  • Focus Collections
  • Classic Collections
  • The Plant Cell
  • Plant Direct
  • Plantae
  • ASPB

For Authors

  • Instructions
  • Submit a Manuscript
  • Editorial Board and Staff
  • Policies
  • Recognizing our Authors

For Reviewers

  • Instructions
  • Journal Miles
  • Policies

Other Services

  • Permissions
  • Librarian resources
  • Advertise in our journals
  • Alerts
  • RSS Feeds

Copyright © 2021 by The American Society of Plant Biologists

Powered by HighWire