Skip to main content

Main menu

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae

User menu

  • My alerts
  • Log in

Search

  • Advanced search
Plant Physiology
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae
  • My alerts
  • Log in
Plant Physiology

Advanced Search

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Follow plantphysiol on Twitter
  • Visit plantphysiol on Facebook
  • Visit Plantae
Research ArticleENVIRONMENTAL STRESS AND ADAPTATION TO STRESS
You have accessRestricted Access

Arabidopsis Hsa32, a Novel Heat Shock Protein, Is Essential for Acquired Thermotolerance during Long Recovery after Acclimation

Yee-yung Charng, Hsiang-chin Liu, Nai-yu Liu, Fu-chiun Hsu, Swee-suak Ko
Yee-yung Charng
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Hsiang-chin Liu
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Nai-yu Liu
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Fu-chiun Hsu
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Swee-suak Ko
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site

Published April 2006. DOI: https://doi.org/10.1104/pp.105.074898

  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading
  • © 2006 American Society of Plant Biologists

Abstract

Plants and animals share similar mechanisms in the heat shock (HS) response, such as synthesis of the conserved HS proteins (Hsps). However, because plants are confined to a growing environment, in general they require unique features to cope with heat stress. Here, we report on the analysis of the function of a novel Hsp, heat-stress-associated 32-kD protein (Hsa32), which is highly conserved in land plants but absent in most other organisms. The gene responds to HS at the transcriptional level in moss (Physcomitrella patens), Arabidopsis (Arabidopsis thaliana), and rice (Oryza sativa). Like other Hsps, Hsa32 protein accumulates greatly in Arabidopsis seedlings after HS treatment. Disruption of Hsa32 by T-DNA insertion does not affect growth and development under normal conditions. However, the acquired thermotolerance in the knockout line was compromised following a long recovery period (>24 h) after acclimation HS treatment, when a severe HS challenge killed the mutant but not the wild-type plants, but no significant difference was observed if they were challenged within a short recovery period. Quantitative hypocotyl elongation assay also revealed that thermotolerance decayed faster in the absence of Hsa32 after a long recovery. Similar results were obtained in Arabidopsis transgenic plants with Hsa32 expression suppressed by RNA interference. Microarray analysis of the knockout mutant indicates that only the expression of Hsa32 was significantly altered in HS response. Taken together, our results suggest that Hsa32 is required not for induction but rather maintenance of acquired thermotolerance, a feature that could be important to plants.

  • Received November 29, 2005.
  • Revised January 26, 2006.
  • Accepted January 26, 2006.
  • Published February 24, 2006.
View Full Text
PreviousNext
Back to top

Table of Contents

Print
Download PDF
Email Article

Thank you for your interest in spreading the word on Plant Physiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Arabidopsis Hsa32, a Novel Heat Shock Protein, Is Essential for Acquired Thermotolerance during Long Recovery after Acclimation
(Your Name) has sent you a message from Plant Physiology
(Your Name) thought you would like to see the Plant Physiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Arabidopsis Hsa32, a Novel Heat Shock Protein, Is Essential for Acquired Thermotolerance during Long Recovery after Acclimation
Yee-yung Charng, Hsiang-chin Liu, Nai-yu Liu, Fu-chiun Hsu, Swee-suak Ko
Plant Physiology Apr 2006, 140 (4) 1297-1305; DOI: 10.1104/pp.105.074898

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Arabidopsis Hsa32, a Novel Heat Shock Protein, Is Essential for Acquired Thermotolerance during Long Recovery after Acclimation
Yee-yung Charng, Hsiang-chin Liu, Nai-yu Liu, Fu-chiun Hsu, Swee-suak Ko
Plant Physiology Apr 2006, 140 (4) 1297-1305; DOI: 10.1104/pp.105.074898
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • RESULTS
    • DISCUSSION
    • MATERIALS AND METHODS
    • Acknowledgments
    • Footnotes
    • LITERATURE CITED
  • Figures & Data
  • Info & Metrics
  • PDF

In this issue

Plant Physiology: 140 (4)
Plant Physiology
Vol. 140, Issue 4
April 2006
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Advertising (PDF)
  • Ed Board (PDF)
  • Front Matter (PDF)
View this article with LENS

More in this TOC Section

  • Knockdown of a Rice Stelar Nitrate Transporter Alters Long-Distance Translocation But Not Root Influx
  • Deciphering Systemic Wound Responses of the Pumpkin Extrafascicular Phloem by Metabolomics and Stable Isotope-Coded Protein Labeling
  • RhNAC2 and RhEXPA4 Are Involved in the Regulation of Dehydration Tolerance during the Expansion of Rose Petals
Show more ENVIRONMENTAL STRESS AND ADAPTATION TO STRESS

Similar Articles

Our Content

  • Home
  • Current Issue
  • Plant Physiology Preview
  • Archive
  • Focus Collections
  • Classic Collections
  • The Plant Cell
  • Plant Direct
  • Plantae
  • ASPB

For Authors

  • Instructions
  • Submit a Manuscript
  • Editorial Board and Staff
  • Policies
  • Recognizing our Authors

For Reviewers

  • Instructions
  • Journal Miles
  • Policies

Other Services

  • Permissions
  • Librarian resources
  • Advertise in our journals
  • Alerts
  • RSS Feeds

Copyright © 2021 by The American Society of Plant Biologists

Powered by HighWire