Skip to main content

Main menu

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae

User menu

  • My alerts
  • Log in

Search

  • Advanced search
Plant Physiology
  • Other Publications
    • Plant Physiology
    • The Plant Cell
    • Plant Direct
    • The Arabidopsis Book
    • Plant Cell Teaching Tools
    • ASPB
    • Plantae
  • My alerts
  • Log in
Plant Physiology

Advanced Search

  • For Authors
    • Submit a Manuscript
    • Instructions for Authors
  • Home
  • Content
    • Current Issue
    • Archive
    • Preview Papers
    • Focus Collections
    • Classics Collection
    • Upcoming Focus Issues
  • Advertisers
  • About
    • About the Journal
    • Editorial Board and Staff
  • Subscribers
  • Librarians
  • More
    • Alerts
    • Contact Us
  • Follow plantphysiol on Twitter
  • Visit plantphysiol on Facebook
  • Visit Plantae
Research ArticleSYSTEMS BIOLOGY, MOLECULAR BIOLOGY, AND GENE REGULATION
You have accessRestricted Access

ZmPIN1a and ZmPIN1b Encode Two Novel Putative Candidates for Polar Auxin Transport and Plant Architecture Determination of Maize

Nicola Carraro, Cristian Forestan, Sabrina Canova, Jan Traas, Serena Varotto
Nicola Carraro
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Cristian Forestan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Sabrina Canova
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jan Traas
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Serena Varotto
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site

Published September 2006. DOI: https://doi.org/10.1104/pp.106.080119

  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading
  • © 2006 American Society of Plant Biologists

Abstract

Shoot apical meristems produce organs in a highly stereotypic pattern that involves auxin. Auxin is supposed to be actively transported from cell to cell by influx (AUXIN/LIKE AUXIN proteins) and efflux (PIN-FORMED proteins) membrane carriers. Current hypotheses propose that, at the meristem surface, PIN proteins create patterns of auxin gradients that, in turn, create patterns of gene expression and morphogenesis. These hypotheses are entirely based on work in Arabidopsis (Arabidopsis thaliana). To verify whether these models also apply to other species, we studied the behavior of PIN proteins during maize (Zea mays) development. We identified two novel putative orthologs of AtPIN1 in maize and analyzed their expression pattern during development. The expression studies were complemented by immunolocalization studies using an anti-AtPIN1 antibody. Interestingly, the maize proteins visualized by this antibody are almost exclusively localized in subepidermal meristematic layers. Both tassel and ear were characterized by a compact group of cells, just below the surface, carrying PIN. In contrast to or to complement what was shown in Arabidopsis, these results point to the importance of internally localized cells in the patterning process. We chose the barren inflorescence2 (bif2) maize mutant to study the role of auxin polar fluxes in inflorescence development. In severe alleles of bif2, the tassel and the ear present altered ZmPIN1a and ZmPIN1b protein expression and localization patterns. In particular, the compact groups of cells in the tassel and ear of the mutant were missing. We conclude that BIF2 is important for PIN organization and could play a role in the establishment of polar auxin fluxes in maize inflorescence, indirectly modulating the process of axillary meristem formation and development.

  • Received March 6, 2006.
  • Accepted July 3, 2006.
  • Published July 14, 2006.
View Full Text
PreviousNext
Back to top

Table of Contents

Print
Download PDF
Email Article

Thank you for your interest in spreading the word on Plant Physiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
ZmPIN1a and ZmPIN1b Encode Two Novel Putative Candidates for Polar Auxin Transport and Plant Architecture Determination of Maize
(Your Name) has sent you a message from Plant Physiology
(Your Name) thought you would like to see the Plant Physiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
ZmPIN1a and ZmPIN1b Encode Two Novel Putative Candidates for Polar Auxin Transport and Plant Architecture Determination of Maize
Nicola Carraro, Cristian Forestan, Sabrina Canova, Jan Traas, Serena Varotto
Plant Physiology Sep 2006, 142 (1) 254-264; DOI: 10.1104/pp.106.080119

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
ZmPIN1a and ZmPIN1b Encode Two Novel Putative Candidates for Polar Auxin Transport and Plant Architecture Determination of Maize
Nicola Carraro, Cristian Forestan, Sabrina Canova, Jan Traas, Serena Varotto
Plant Physiology Sep 2006, 142 (1) 254-264; DOI: 10.1104/pp.106.080119
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • RESULTS
    • DISCUSSION
    • MATERIALS AND METHODS
    • Acknowledgments
    • Footnotes
    • LITERATURE CITED
  • Figures & Data
  • Info & Metrics
  • PDF

In this issue

Plant Physiology: 142 (1)
Plant Physiology
Vol. 142, Issue 1
September 2006
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Advertising (PDF)
  • Back Matter (PDF)
  • Ed Board (PDF)
  • Front Matter (PDF)
View this article with LENS

More in this TOC Section

  • Common and Specific Protein Accumulation Patterns in Different Albino/Pale-Green Mutants Reveals Regulon Organization at the Proteome Level
  • Buffering Capacity Explains Signal Variation in Symbiotic Calcium Oscillations
  • The Atypical Short-Chain Dehydrogenases HCF173 and HCF244 Are Jointly Involved in Translational Initiation of the psbA mRNA of Arabidopsis
Show more SYSTEMS BIOLOGY, MOLECULAR BIOLOGY, AND GENE REGULATION

Similar Articles

Our Content

  • Home
  • Current Issue
  • Plant Physiology Preview
  • Archive
  • Focus Collections
  • Classic Collections
  • The Plant Cell
  • Plant Direct
  • Plantae
  • ASPB

For Authors

  • Instructions
  • Submit a Manuscript
  • Editorial Board and Staff
  • Policies
  • Recognizing our Authors

For Reviewers

  • Instructions
  • Journal Miles
  • Policies

Other Services

  • Permissions
  • Librarian resources
  • Advertise in our journals
  • Alerts
  • RSS Feeds

Copyright © 2021 by The American Society of Plant Biologists

Powered by HighWire